### Topology

Hery Randriamaro<sup>1</sup>

Institut für Mathematik Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel

February 15, 2022

<sup>1</sup>E-mail: hery.randriamaro@mathematik.uni-kassel.de

# Contents

| Ι | Gen                                   | neral Topology                 | 1  |  |  |
|---|---------------------------------------|--------------------------------|----|--|--|
| 1 | Topological Spaces                    |                                |    |  |  |
|   | 1.1                                   | Topological Spaces             | 3  |  |  |
|   | 1.2                                   | Neighborhoods                  | 4  |  |  |
|   | 1.3                                   | Interior                       | 5  |  |  |
|   | 1.4                                   | Closure                        | 6  |  |  |
|   | 1.5                                   | Separated Topological Spaces   | 6  |  |  |
| 2 | Limit and Continuity 7                |                                |    |  |  |
|   | 2.1                                   | Limits                         | 7  |  |  |
|   | 2.2                                   | Adherence Values               | 8  |  |  |
|   | 2.3                                   | Continuity                     | 9  |  |  |
|   | 2.4                                   | Homeomorphisms                 | 10 |  |  |
| 3 | Construction of Topological Spaces 11 |                                |    |  |  |
|   | 3.1                                   | Topological Subspaces          | 11 |  |  |
|   | 3.2                                   | Products of Topological Spaces | 13 |  |  |
|   | 3.3                                   | Quotient Spaces                | 14 |  |  |
| 4 | Compact Spaces 15                     |                                |    |  |  |
|   | 4.1                                   | Compact Spaces                 | 15 |  |  |
|   | 4.2                                   | Properties of Compact Spaces   | 16 |  |  |
|   | 4.3                                   | Locally Compact Spaces         | 18 |  |  |
| 5 | Connected Spaces 19                   |                                |    |  |  |
|   | 5.1                                   | Connected Spaces               | 19 |  |  |
|   | 5.2                                   | Connected Components           | 20 |  |  |
|   | 5.3                                   | Locally Connected Spaces       | 21 |  |  |
|   | 5.4                                   | Path Connected Spaces          | 21 |  |  |
|   | 5.5                                   | Locally Path-Connected Spaces  | 22 |  |  |
| 6 | Metric Spaces 23                      |                                |    |  |  |
|   | 6.1                                   | Metric Spaces                  | 23 |  |  |
|   | 6.2                                   | Continuity of the Metric       | 24 |  |  |
|   | 6.3                                   | Sequences in Metric Spaces     | 25 |  |  |
|   | 6.4                                   | Complete Metric Spaces         | 26 |  |  |

| Π  | Algebraic Topology                          | 27 |  |  |
|----|---------------------------------------------|----|--|--|
| 7  | Fundamental Groups                          |    |  |  |
|    | 7.1 Homotopy of Paths                       | 29 |  |  |
|    | 7.2 Fundamental Groups                      | 31 |  |  |
|    | 7.3 The Fundamental Group of $\mathbb{S}^n$ | 33 |  |  |
| 8  | Covering Spaces                             | 37 |  |  |
|    | 8.1 Covering Maps                           | 37 |  |  |
|    | 8.2 Function Liftings                       | 38 |  |  |
| 9  | Homotopy                                    |    |  |  |
|    | 9.1 Homotopy of Functions                   | 43 |  |  |
|    | 9.2 Homotopy Equivalence                    | 44 |  |  |
| 10 | Singular Homology 4                         |    |  |  |
|    | 10.1 Singular Homology                      | 47 |  |  |
|    | 10.2 Homotopy Invariance                    | 50 |  |  |
|    | 10.3 Relative Homology Groups               | 54 |  |  |

# Part I

# **General Topology**

## **Topological Spaces**

#### **1.1 Topological Spaces**

**Definition 1.1.** One calls **topological space** a set *X* equipped with a family  $\mathcal{U}$  of subsets of *X*, called the **open** sets of *X*, satisfying the following conditions:

- (*i*) the subsets  $\emptyset$  and X of X are open,
- (*ii*) every union of open subsets of X is open,
- (*iii*) every finite intersection of open subsets of X is open.

One says that  $\mathscr{U}$  defines a **topology** on *X*.

*Example.* Consider a set X. The collection of all subsets of X is a topology on X, and is called the **discrete topology** on X. The collection consisting of X and  $\emptyset$  is also a topology, and is called the **trivial topology** on X.

*Example.* Consider a set *X*. Let  $\mathscr{U}_f$  be the collection of all subsets *A* of *X* such that  $X \setminus A$  is either finite or is *X*. Then,  $\mathscr{U}_f$  is a topology called the **finite complement topology** on *X*. Both *X* and  $\varnothing$  are in  $\mathscr{U}_f$ , since  $X \setminus X = \varnothing$  is finite and  $X \setminus \varnothing = X$ . If  $\{A_i\}_{i \in I}$  is a family of nonempty elements of  $\mathscr{U}_f$ , since  $X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X \setminus A_i)$  is finite, then  $\bigcup_{i \in I} A_i \in \mathscr{U}_f$ . In case *I* is finite,  $X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (X \setminus A_i)$  is consequently finite, then  $\bigcap_{i \in I} A_i \in \mathscr{U}_f$ .

**Definition 1.2.** Let *X* be a topological space, and  $A \subseteq X$ . One says that *A* is **closed** if  $X \setminus A$  is open.

**Proposition 1.3.** Let X be a topological space:

- (*i*) the subsets  $\emptyset$  and X of X are closed,
- (ii) every intersection of closed subsets of X is closed,
- *(iii)* every finite union of closed subsets of X is closed.

*Proof.* The subsets  $\varnothing$  and X are evidently closed by passage to complements. Let  $\mathscr{C}$  a family of closed subsets of X. Since  $X \setminus \bigcap_{B \in \mathscr{C}} B = \bigcup_{B \in \mathscr{C}} (X \setminus B)$  and  $X \setminus B$  is open, then  $X \setminus \bigcap_{B \in \mathscr{C}} B$  is open and  $\bigcap_{B \in \mathscr{C}} B$ 

is consequently closed. If the family  $\mathscr{C}$  is finite, since  $X \setminus \bigcup_{B \in \mathscr{C}} B = \bigcap_{B \in \mathscr{C}} (X \setminus B)$  and  $\bigcap_{B \in \mathscr{C}} (X \setminus B)$  is open,

then  $\bigcup_{B \in \mathscr{C}} B$  is closed.

**Definition 1.4.** If X is a set, a **basis** for a topology on X is a collection  $\mathscr{B}$  of subsets of X such that

- (*i*) for each  $x \in X$ , there exists an element  $B \in \mathscr{B}$  containing x,
- (*ii*) if x belongs to the intersection of two elements  $B_1, B_2 \in \mathcal{B}$ , then there exists  $B \in \mathcal{B}$  such that  $x \in B$  and  $B \subseteq B_1 \cap B_2$ .

If  $\mathscr{B}$  satisfies both conditions, then one defines the **topology generated** by  $\mathscr{B}$  as follows: A subset *U* of *X* is said to be open in *X* if, for each  $x \in U$ , there exists  $B \in \mathscr{B}$  such that  $x \in B$  and  $B \subseteq U$ .

**Proposition 1.5.** Let X be a set, and  $\mathcal{B}$  a basis for a topology  $\mathcal{U}$  on X. Then,  $\mathcal{U}$  equals the collection formed by all unions of elements in  $\mathcal{B}$ .

*Proof.* As  $\mathscr{U}$  is a topology, any union of elements in  $\mathscr{B}$  clearly belongs to  $\mathscr{U}$ . Conversely, given  $U \in \mathscr{U}$ , for each  $x \in U$ , there exists  $B_x \in \mathscr{B}$  such that  $x \in B_x$  and  $B_x \subseteq U$  as  $\mathscr{B}$  is a basis. So  $\bigcup_{x \in U} B_x \subseteq U$ , and we also have  $U \subseteq \bigcup_{x \in U} B_x$  since  $\bigcup_{x \in U} B_x$  contains every element of U.

**Proposition 1.6.** Let X be a set equipped with a topology  $\mathcal{U}$ . Suppose that  $\mathcal{C}$  is a collection of open sets such that, for each  $U \in \mathcal{U}$  and each  $x \in U$ , there exists  $C \in \mathcal{C}$  such that  $x \in C$  and  $C \subseteq U$ . Then,  $\mathcal{C}$  is a basis for  $\mathcal{U}$ .

*Proof.* We first prove that  $\mathscr{C}$  is a basis. For the first condition, given  $x \in X$ , since  $X \in \mathscr{U}$ , then there exists  $C \in \mathscr{C}$  such that  $x \in C$  and  $C \subseteq \mathscr{C}$ . For the second condition, let  $x \in C_1 \cap C_2$  where  $C_1, C_2 \in \mathscr{C}$ . Since  $C_1$  and  $C_2$  are open, so is  $C_1 \cap C_2$ , then there exists  $C \in \mathscr{C}$  such that  $x \in C$  and  $C \subseteq C_1 \cap C_2$ .

We now prove that the topology  $\mathscr{T}$  generated by  $\mathscr{C}$  is  $\mathscr{U}$ . If  $U \in \mathscr{U}$  and  $x \in U$ , there exists  $C \in \mathscr{C}$  such that  $x \in C$  and  $C \subseteq U$ , and consequently  $U \in \mathscr{T}$  by definition. Conversely, if  $T \in \mathscr{T}$ , then T equals a union of elements in  $\mathscr{C}$  from Proposition 1.5. As  $\mathscr{C} \subseteq \mathscr{U}$  and  $\mathscr{U}$  is a topology, then  $T \in \mathscr{U}$ .  $\Box$ 

#### **1.2** Neighborhoods

**Definition 1.7.** Let *X* be a topological space, and  $x \in X$ . A subset *V* of *X* is called a **neighborhood** of *x* in *X* if there exists an open subset *A* of *X* such that  $x \in A$  and  $A \subseteq V$ .

**Proposition 1.8.** *Let* X *be a topological space, and*  $x \in X$ *.* 

- (i) If V and V' are neighborhoods of x, then  $V \cap V'$  is a neighborhood of x.
- (ii) If V is a neighborhood of x, and W a subset such that  $V \subseteq W$ , then W is a neighborhood of x.

*Proof.* There exists open subsets U, U' containing x such that  $U \subseteq V$  and  $U' \subseteq V'$ . So,  $U \cap U'$  is an open subset of X containing x with the property  $U \cap U' \subseteq V \cap V'$ . If  $V \subseteq W$ , then  $U \subseteq W$ , and W is obviously a neighborhood of x.

**Proposition 1.9.** Let X be a topological space, and  $A \subseteq X$ . These conditions are equivalent:

(i) A is open,

(*ii*) A is a neighborhood of each of its points.

*Proof.*  $(i) \Rightarrow (ii)$ : For a point *x* of *A*, we obviously have  $x \in A \subseteq A$ , so *A* is a neighborhood of *x*.  $(ii) \Rightarrow (i)$ : For every  $x \in A$ , there exists an open subset  $A_x$  of *X* containing *x* such that that  $A_x \subseteq A$ . Then, the union  $\bigcup_{x \in A} A_x$  is open, and is included in *A*. Since each point of *A* is contained in  $\bigcup_{x \in A} A_x$ , then  $A \subseteq \bigcup_{x \in A} A_x$ . Thus  $A = \bigcup_{x \in A} A_x$ , and *A* is consequently open.

**Definition 1.10.** Let *X* be a topological space, and  $x \in X$ . One calls **fundamental system of neighborhoods** of *x* any family  $\{V_i\}_{i \in I}$  of neighborhoods of *x* such that every neighborhood of *x* contains one of the  $V_i$ .

*Example.* Let X be a topological space, and  $x \in X$ . The set of all open subsets of X containing x is a fundamental system of neighborhoods of x.

#### 1.3 Interior

**Definition 1.11.** Let *X* be a topological space,  $A \subseteq X$ , and  $x \in X$ . The point *x* is **interior** to *A* if *A* is a neighborhood of *x* in *X*. The set of all points interior to *A* is called the interior of *A* and denoted  $A^{\circ}$ .

**Proposition 1.12.** Let X be a topological space, and A a subset of X. Then  $A^\circ$  is the largest open set of X contained in A.

*Proof.* Let *U* be an open subset of *X* contained in *A*. If  $x \in U$ , then *A* is neighborhood of *x*, therefore  $x \in A^\circ$ , and consequently  $U \subseteq A^\circ$ . So, every open subset contained in *A* is included in  $A^\circ$ . Now, if  $x \in A^\circ$ , there exists an open subset *B* such that  $x \in B$  and  $B \subseteq A$ . Then  $B \subseteq A^\circ$  by the first part of the proof, thus  $A^\circ$  is a neighborhood of *x*. From Proposition 1.9, we deduce that  $A^\circ$  is open.

**Proposition 1.13.** *Let X be a topological space, and*  $A \subseteq X$ *. These conditions are equivalent:* 

- (i) A is open,
- (*ii*)  $A = A^{\circ}$ .

*Proof.*  $(i) \Rightarrow (ii)$ : If *A* is open, then  $A = A^{\circ}$  from Proposition 1.12.  $(ii) \Rightarrow (i)$ : If  $A = A^{\circ}$ , then *A* is open since  $A^{\circ}$  is open.

**Proposition 1.14.** Let X be a topological space, and  $A, B \subseteq X$ . Then  $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$ .

*Proof.* It is clear that  $(A \cap B)^{\circ} \subseteq A^{\circ}$  and  $(A \cap B)^{\circ} \subseteq B^{\circ}$ , hence  $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$ . One has  $A^{\circ} \subseteq A$  and  $B^{\circ} \subseteq B$ , therefore  $A^{\circ} \cap B^{\circ} \subseteq A \cap B$ . Since  $A^{\circ} \cap B^{\circ}$  is open, then  $A^{\circ} \cap B^{\circ} \subseteq (A \cap B)^{\circ}$  from Proposition 1.12.

**Definition 1.15.** Let X be a topological space, and  $A \subseteq X$ . The **boundary** of A is the closed set  $\partial A := X \setminus (A^{\circ} \sqcup (X \setminus A)^{\circ})$ .

#### 1.4 Closure

**Definition 1.16.** Let *X* be a topological space,  $A \subseteq X$ , and  $x \in X$ . One says that *x* is **adherent** to *A* if every neighborhood of *x* in *X* intersects *A*. The set of all points adherent to *A* is called the **closure** of *A* and denoted  $\overline{A}$ .

**Proposition 1.17.** *Let X be a topological space, and*  $A \subseteq X$ *. Then*  $\overline{A} = X \setminus (X \setminus A)^{\circ}$ *.* 

*Proof.* Take a point  $x \in X$ . We have  $x \notin \overline{A}$  if and only if x has a neighborhood disjoint from A if and only if  $x \in (X \setminus A)^{\circ}$ .

**Proposition 1.18.** *Let X be a topological space, and*  $A, B \subseteq X$ *.* 

- (*i*) A is the smallest closed subset of X containing A.
- (*ii*) A is closed if and only if  $A = \overline{A}$ .
- (*iii*)  $\overline{A \cup B} = \overline{A} \cup \overline{B}$ .

*Proof.* (*i*) : The interior  $(X \setminus A)^{\circ}$  is the largest open set contained in  $X \setminus A$ . Therefore its complement  $\overline{A}$  is closed and contains A. If B is a closed subset of X containing A, then  $X \setminus B \subseteq (X \setminus A)^{\circ} = X \setminus \overline{A}$ , and  $\overline{A} \subseteq B$ .

(*ii*) : As  $\overline{A}$  is the smallest closed subset of X containing A, then A is closed if and only if  $A = \overline{A}$ .

(*iii*) : From Proposition 1.17, we have  $\overline{A \cup B} = X \setminus (X \setminus (A \cup B))^{\circ} = X \setminus ((X \setminus A) \cap (X \setminus B))^{\circ}$ . Using Proposition 1.14, then  $\overline{A \cup B} = X \setminus ((X \setminus A)^{\circ} \cap (X \setminus B)^{\circ}) = (X \setminus (X \setminus A)^{\circ}) \cup (X \setminus (X \setminus B)^{\circ}) = \overline{A} \cup \overline{B}$ .  $\Box$ 

**Definition 1.19.** Let *X* be a topological space, and  $A \subseteq X$ . One says *A* is **dense** if  $\overline{A} = X$ .

**Proposition 1.20.** *Let X be a topological space, and*  $A \subseteq X$ *. These conditions are equivalent:* 

- (i) A is dense,
- (*ii*)  $(X \setminus A)^\circ = \emptyset$ ,
- (iii) every nonempty open subset of X intersects A.

*Proof.*  $(i) \Rightarrow (ii)$ : Since  $X \setminus (X \setminus A)^\circ = \overline{A} = X$ , then  $(X \setminus A)^\circ = \emptyset$ .

 $(ii) \Rightarrow (iii)$ : Let U be an open subset that does not intersect A. Therefore  $U \subseteq (X \setminus A)^\circ = \emptyset$ .

 $(iii) \Rightarrow (i)$ : Since every neighborhood of every point of X intersects A, then  $\overline{A} = X$ .

#### 

#### **1.5 Separated Topological Spaces**

**Definition 1.21.** A topological space *X* is said to be **separated** if any two distinct points of *X* admit disjoint neighborhoods.

**Proposition 1.22.** *Let X be a separated topological space, and*  $x \in X$ *. Then*  $\{x\}$  *is closed.* 

*Proof.* Take a point  $y \in X \setminus \{x\}$ . There exist neighborhoods V and W of x and y respectively that are disjoint. In particular,  $W \subseteq X \setminus \{x\}$ , hence  $X \setminus \{x\}$  is neighborhood of y. Thus  $X \setminus \{x\}$  is a neighborhood of each of its points. We deduce from Proposition 1.9 that  $X \setminus \{x\}$  is open.

### **Limit and Continuity**

#### 2.1 Limits

**Definition 2.1.** A filter on a set *X* is a set  $\mathscr{F}$  formed by nonempty subsets of *X* satisfying the following conditions:

- (*i*) if  $A \in \mathscr{F}$  and  $B \in \mathscr{F}$ , then  $A \cap B \in \mathscr{F}$ ,
- (*ii*) if  $A \in \mathscr{F}$  and if A' is a subset of X containing A, then  $A' \in \mathscr{F}$ .

**Definition 2.2.** A filter base on a set *X* is a set  $\mathscr{B}$  of nonempty subsets of *X* such that, if  $A \in \mathscr{B}$  and  $B \in \mathscr{B}$ , there exists  $C \in \mathscr{B}$  such that  $C \subseteq A \cap B$ .

*Example.* Let *X* be a topological space, and  $x_0 \in X$ . The set  $\mathscr{V}$  formed by the neighborhoods of  $x_0$  is a filter on *X*. A fundamental system of neighborhoods of  $x_0$  is a filter base on *X*. Let  $Y \subseteq X$ , and assume  $x_0 \in \overline{Y}$ . The set  $\{Y \cap V \mid V \in \mathscr{V}\}$  is a filter on *Y*.

*Example.* For  $x \in \mathbb{R}$ , the set of intervals  $\{(x - \varepsilon, x + \varepsilon)\}_{\varepsilon \in \mathbb{R}^*_{\perp}}$  is a filter base on  $\mathbb{R}$ .

**Definition 2.3.** Let *X* be a set equipped with a filter base  $\mathscr{B}$ , *Y* a topological space,  $f : X \to Y$  a function, and *l* a point of *Y*. One says that *f* tends to *l* along  $\mathscr{B}$  if, for every neighborhood *V* of *l* in *Y*, there exists  $B \in \mathscr{B}$  such that  $f(B) \subseteq V$ .

If *X* is a topological space, and  $\mathscr{B}$  the filter formed by the neighborhoods of a point  $x_0$  of *X*, one says that *l* is the **limit** of *f* along the neighborhood filter of  $x_0$ , and writes  $\lim f(x) = l$ .

**Proposition 2.4.** Let X, Y be topological spaces,  $f : X \to Y$  a function,  $x_0 \in X$ ,  $l \in Y$ ,  $\{V_i\}_{i \in I}$  a fundamental system of neighborhoods of  $x_0$  in X, and  $\{W_j\}_{j \in J}$  a fundamental system of neighborhoods of l in Y. The following conditions are equivalent:

- (i)  $\lim_{x \to x_0} f(x) = l,$
- (*ii*) for every  $j \in J$ , there exists  $i \in I$  such that  $f(V_i) \subseteq W_j$ .

*Proof.*  $(i) \Rightarrow (ii)$ : For every  $j \in J$ , there exists a neighborhood V of  $x_0$  such that  $f(V) \subseteq W_j$ . By definition, there exists  $i \in I$  such that  $V_i \subseteq V$ . Therefore  $f(V_i) \subseteq W_j$ .

 $(ii) \Rightarrow (i)$ : Let *W* be a neighborhood of *l*. There exists  $j \in J$  such that  $W_i \subseteq W$ . Then, there exists  $i \in I$  such that  $f(V_i) \subseteq W_j$ , and consequently  $f(V_i) \subseteq W$ .

**Proposition 2.5.** Let X be a set equipped with a filter base  $\mathcal{B}$ , Y a separated topological space, and  $f: X \to Y$  a function. If f admits a limit along  $\mathcal{B}$ , this limit is unique.

*Proof.* Let l, l' be distinct limits of f along  $\mathcal{B}$ . Since Y is separated, there exist disjoint neighborhoods V and V' of l and l' respectively in Y. There exist  $B, B' \in \mathscr{B}$  such that  $f(B) \subseteq V$  and  $f(B') \subseteq V'$ . By definition, there exists  $B'' \in \mathscr{B}$  such that  $B'' \subseteq B \cap B'$ . Then  $f(B'') \subseteq f(B) \cap f(B') \subseteq V \cap V'$ . Since B''is nonempty, then  $f(B'') \neq \emptyset$ , and consequently  $V \cap V' \neq \emptyset$  which is absurd. 

**Proposition 2.6.** Let X be a set equipped with a filter base  $\mathscr{B}$ , Y a topological space,  $f: X \to Y$  a function, and  $l \in Y$ . Let  $X' \in \mathcal{B}$ , and f' the restriction of f to X'. The sets  $B \cap X'$ , where  $B \in \mathcal{B}$ , form a filter base  $\mathscr{B}'$  on X'. The following conditions are equivalent:

- (i) f tends to l along  $\mathcal{B}$ ,
- (ii) f' tends to l along  $\mathscr{B}'$ .

*Proof.*  $(i) \Rightarrow (ii)$ : Let V be a neighborhood of l. There exists  $B \in \mathscr{B}$  such that  $f(B) \subseteq V$ . Hence  $f'(B \cap X') \subseteq V$ . As  $B \cap X'\mathscr{B}'$ , then f' tends to l along  $\mathscr{B}'$ .

 $(ii) \Rightarrow (i)$ : Let V be a neighborhood of l. There exists  $B' \in \mathscr{B}'$  such that  $f(B') \subseteq V$ . But B' has the form  $B \cap X'$  with  $B \in \mathcal{B}$ . Since  $X' \in \mathcal{B}$ , there exists  $B'' \in \mathcal{B}$  such that  $B'' \subseteq B \cap X'$ . Then,  $f(B'') \subseteq f'(B') \subseteq V$ , and f consequently tends to l along  $\mathscr{B}$ . 

#### 2.2 **Adherence Values**

**Definition 2.7.** Let X be a set equipped with a filter base  $\mathscr{B}$ , Y a topological space,  $f: X \to Y$  a function, and l a point of Y. One says that l is an **adherence value** of f along  $\mathscr{B}$  if, for every neighborhood V of l and for every  $B \in \mathcal{B}$ , f(B) intersects V.

*Example.* Consider the function  $f : \mathbb{R} \to \mathbb{R}, x \mapsto \{x\}$ . Then, every real number in [0, 1) is an adherence value of f along the filter base  $\{(a, +\infty)\}_{a \in \mathbb{R}^+}$ .

**Proposition 2.8.** Let X be a set equipped with a filter base  $\mathcal{B}$ , Y a separated topological space,  $f: X \to Y$  a function, and l a point of Y. If f tends to l along  $\mathcal{B}$ , then l is the unique adherence value of f along  $\mathcal{B}$ .

*Proof.* Let V be a neighborhood of l, and  $B \in \mathscr{B}$ . There exists  $B' \in \mathscr{B}$  such that  $f(B') \subseteq V$ . Then  $B \cap B' \neq \emptyset$ , hence  $f(B \cap B') \neq \emptyset$ , and  $f(B \cap B') \subseteq f(B) \cap V$ . Therefore f(B) intersects V, meaning that *l* is an adherence value of *f* along  $\mathscr{B}$ .

Let l' be an adherence value of f along  $\mathcal{B}$ , assume  $l' \neq l$ . There exist neighborhoods V and V' of l and l' respectively that are disjoint. There exists  $B \in \mathcal{B}$  such that  $f(B) \subseteq V$ . Then  $f(B) \cap V'$  contradicting the fact that l' is an adherence value. 

**Proposition 2.9.** Let X be a set equipped with a filter base  $\mathscr{B}$ , Y a topological space, and  $f: X \to Y$ a function. The set formed by the adherence values of f along  $\mathscr{B}$  is  $\bigcap f(B)$ .  $B \in \mathscr{B}$ 

*Proof.* Let *l* be an adherence value of *f* along  $\mathscr{B}$ , and  $B \in \mathscr{B}$ . Every neighborhood of *l* intersects f(B). Then  $l \in \overline{f(B)}$ , and  $l \in \bigcap \overline{f(B)}$ .  $B \in \mathscr{B}$ 

Let  $l' \in \bigcap \overline{f(B)}$ , V' be a neighborhood of l', and take  $B \in \mathscr{B}$ . Since  $l' \in \overline{f(B)}$ , then f(B) intersects V', and l' is an adherence value of f. 

#### 2.3 Continuity

**Definition 2.10.** Let *X*, *Y* be topological spaces,  $f : X \to Y$  a function, and  $x_0 \in X$ . One says that *f* is **continuous** at  $x_0$  if  $\lim_{x \to x_0} f(x) = f(x_0)$ . In other words, for every neighborhood *V* of  $f(x_0)$ , there exists a neighborhood *U* of  $x_0$  such that  $f(U) \subseteq V$ .

**Proposition 2.11.** Let X, Y, Z be topological spaces,  $f : X \to Y$  and  $g : Y \to Z$  functions, and  $x_0 \in X$ . If f is continuous at  $x_0$ , and g at  $f(x_0)$ , then  $g \circ f$  is continuous at  $x_0$ .

*Proof.* Let *W* be a neighborhood of  $g(f(x_0))$  in *Z*. There exists a neighborhood *V* of  $f(x_0)$  in *Y* such that  $g(V) \subseteq W$ . Moreover, there exists a neighborhood *U* of  $x_0$  in *X* such that  $f(U) \subseteq V$ . Then, *U* is neighborhood of *U* such that  $g \circ f(U) \subseteq g(V) \subseteq W$ .

**Definition 2.12.** Let *X*, *Y* be topological spaces, and  $f : X \to Y$  a function. One says that *f* is continuous on *X* if *f* is continuous at every point of *X*. The set of continuous functions from *X* into *Y* is denoted  $\mathscr{C}(X, Y)$ .

*Example*. Let  $A, B \subseteq \mathbb{R}^n$ , and f a rational function such that f is defined on A and f(A) = B. Consider the basis  $\mathscr{B}_A = \{A \cap \mathbb{B}(x, r) \mid x \in A, r \in \mathbb{R}^*_+\}$  resp.  $\mathscr{B}_B = \{B \cap \mathbb{B}(x, r) \mid x \in B, r \in \mathbb{R}^*_+\}$  for a topology on A resp. B, where  $\mathbb{B}(x, r)$  is the open n-ball  $\{y \in \mathbb{R}^n \mid ||x - y||_2 < r\}$ . Take  $x_0 \in A$ , and a neighborhood V of  $f(x_0)$ . There exists an open ball  $\mathbb{B}(x_0, r)$  such that  $A \cap \mathbb{B}(x_0, r) \subseteq f^{-1}(V)$ . So  $f(A \cap \mathbb{B}(x_0, r)) \subseteq V$ , and  $f : A \to B$  is consequently continuous.

**Proposition 2.13.** Let X, Y, Z be topological spaces,  $f \in \mathcal{C}(X, Y)$ , and  $g \in \mathcal{C}(Y, Z)$ . Then, we have  $g \circ f \in \mathcal{C}(X, Z)$ .

*Proof.* Use Proposition 2.11 for the continuity of  $g \circ f$  on every point of X.

**Proposition 2.14.** *Let* X, Y *be topological spaces, and*  $f : X \to Y$  *a function. The following conditions are equivalent:* 

- (i) f is continuous,
- (ii)  $f^{-1}(B)$  is an open subset of X if B is an open subset of Y,
- (iii)  $f^{-1}(B)$  is a closed subset of X if B is a closed subset of Y,
- (iv) for every subset A of X,  $f(\overline{A}) \subseteq \overline{f(A)}$ .

*Proof.*  $(i) \Rightarrow (iv)$ : Let  $A \subseteq X$  and  $x_0 \in \overline{A}$ . Take a neighborhood W of  $f(x_0)$  in Y. Since f is continuous at  $x_0$ , there exists a neighborhood V of  $x_0$  in X such that  $f(V) \subseteq W$ . The fact  $x_0 \in \overline{A}$  implies  $V \cap A \neq \emptyset$ . As  $f(V \cap A) \subseteq W \cap f(A)$ , one sees that  $W \cap f(A) \neq \emptyset$ . Therefore  $f(x_0) \in \overline{f(A)}$ , and  $f(\overline{A}) \subseteq \overline{f(A)}$ .  $(iv) \Rightarrow (iii)$ : Let B be a closed subset of Y, and  $A \in f^{-1}(B)$ . Then  $f(A) \subseteq B$ , and  $\overline{f(A)} \subseteq B$  from

Proposition 1.18 (i). If  $x \in \overline{A}$ , then  $f(x) \in \overline{f(A)}$  as f is continuous. Therefore  $f(x) \in B$  and so  $x \in A$ . Thus  $A = \overline{A}$ .

 $(iii) \Rightarrow (ii)$ : Let *B* be an open subset of *Y*. Then  $Y \setminus B$  is closed, and consequently  $f^{-1}(Y \setminus B)$  is closed. But  $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$ , then  $f^{-1}(B)$  is open.

 $(ii) \Rightarrow (i)$ : Let  $x_0 \in X$ , and W a neighborhood of  $f(x_0)$  in Y. There exists an open subset B of Y such that  $f(x_0) \in B \subseteq W$ . If  $A = f^{-1}(B)$ , then A is open, and A is a neighborhood of  $x_0$  as  $x_0 \in A$ . Since  $f(A) \subseteq B \subseteq W$ , then f is continuous at  $x_0$ .

#### 2.4 Homeomorphisms

**Proposition 2.15.** Let *X*, *Y* be topological spaces, and  $f : X \to Y$  a bijective function. The following conditions are equivalent:

- (*i*) f and  $f^{-1}$  are a continuous,
- (ii) a subset A of X is open if and only if f(A) is open in Y,
- (iii) a subset A of X is closed if and only if f(A) is closed in Y.

*Proof.*  $(i) \Rightarrow (ii)$ : Using Proposition 2.14, we deduce from the continuity of f that if f(A) is open then A is open, and from the continuity of  $f^{-1}$  that if A is open then f(A) is open. One analogously proves  $(i) \Rightarrow (iii)$ .

 $(ii) \Rightarrow (i)$ : Using Proposition 2.14, "if f(A) is open then A is open" implies that f is continuous, and "if A is open then f(A) is open" implies that  $f^{-1}$  is continuous. One analogously gets  $(iii) \Rightarrow (i)$ .  $\Box$ 

**Definition 2.16.** Let *X*, *Y* be topological spaces, and *f* a function from *X* into *Y*. One says that *f* is a **homeomorphism** if *f* is bijective, continuous, and  $f^{-1}$  is continuous. In that case, one says that *X* and *Y* are homeomorphic.

*Example.* The *n*-dimensional sphere is the set  $\mathbb{S}^n := \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \dots + x_{n+1}^2 = 1\}$ . Let  $a = (0, \dots, 0, 1) \in \mathbb{S}^n$ , and identify  $\mathbb{R}^n$  with  $\{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{n+1} = 0\}$ . We are going to define a homeomorphism from  $\mathbb{S}^n \setminus \{a\}$  onto  $\mathbb{R}^n$ . Take a point  $x = (x_1, \dots, x_{n+1}) \in \mathbb{S}^n \setminus \{a\}$ . The line joining *a* and *x* is  $D = \{(\lambda x_1, \dots, \lambda x_n, 1 + \lambda (x_{n+1} - 1)) \in \mathbb{R}^{n+1} \mid \lambda \in \mathbb{R}\}$ . This line touches  $\mathbb{R}^n$ 

when  $1 + \lambda(x_{n+1} - 1) = 0$ , that is when  $\lambda = \frac{1}{1 - x_{n+1}}$ . Thus  $D \cap \mathbb{R}^n$  reduces to the point f(x) with coordinates

$$x'_1 = \frac{x_1}{1 - x_{n+1}}, \quad x'_2 = \frac{x_2}{1 - x_{n+1}}, \dots, \quad x'_n = \frac{x_n}{1 - x_{n+1}}, \quad x'_{n+1} = 0.$$
 (2.1)

We have thus defined a function  $f : \mathbb{S}^n \setminus \{a\} \to \mathbb{R}^n$ . We now prove that, given  $x' = (x'_1, \dots, x'_n, 0)$ , there exists one and only one point  $x = (x_1, \dots, x_{n+1})$  in  $\mathbb{S}^n \setminus \{a\}$  such that f(x) = x'. The solution of Equation 2.1 yields the conditions

$$x_i = x'_i(1 - x_{n+1})$$
 for  $1 \le i \le n$ , and  $\sum_{i=1}^n x'_i^2(1 - x_{n+1})^2 + x_{n+1}^2 = 1$ .

After dividing out  $1 - x_{n+1}$ , we obtain  $(x'_1{}^2 + \dots + x'_n{}^2)(1 - x_{n+1}) - 1 - x_{n+1} = 0$ , which gives

$$x_{n+1} = \frac{x_1'^2 + \dots + x_n'^2 - 1}{x_1'^2 + \dots + x_n'^2 + 1} \quad \text{and} \quad x_1 = \frac{2x_1'}{x_1'^2 + \dots + x_n'^2 + 1}, \dots, x_n = \frac{2x_n'}{x_1'^2 + \dots + x_n'^2 + 1}.$$
 (2.2)

Thus  $f: \mathbb{S}^n \setminus \{a\} \to \mathbb{R}^n$  is a bijection. Let  $\mathscr{B}_{\mathbb{S}^n \setminus \{a\}} = \{\mathbb{S}^n \setminus \{a\} \cap \mathbb{B}(x,r) \mid x \in \mathbb{S}^n \setminus \{a\}, r \in \mathbb{R}^*_+\}$  resp.  $\mathscr{B}_{\mathbb{R}^n} = \{\mathbb{R}^n \cap \mathbb{B}(x,r) \mid x \in \mathbb{R}^n, r \in \mathbb{R}^*_+\}$  be a basis for a topology on  $\mathbb{S}^n \setminus \{a\}$  resp.  $\mathbb{R}^n$ , where  $\mathbb{B}(x,r)$  is the open n + 1-ball  $\{y \in \mathbb{R}^{n+1} \mid ||x - y||_2 < r\}$ . We see in Equation 2.1 resp. Equation 2.2 that f resp.  $f^{-1}$  is a rational function, and is consequently continuous. Hence f is a homeomorphism called stereographic projection of  $\mathbb{S}^n \setminus \{a\}$  onto  $\mathbb{R}^n$ .

### **Construction of Topological Spaces**

#### **3.1** Topological Subspaces

**Proposition 3.1.** Let X be a topological space,  $\mathscr{U}$  a topology on X, and Y a subset of X. Then  $\mathscr{V} = \{U \cap Y \mid U \in \mathscr{U}\}$  is a topology on Y.

*Proof.* (*i*) : As  $\emptyset, X \in \mathcal{U}$ , then  $\emptyset = \emptyset \cap Y \in \mathcal{V}$  and  $Y = X \cap Y \in \mathcal{V}$ . (*ii*) : Let  $\{V_i\}_{i \in I}$  be a family of subsets belonging to  $\mathcal{V}$ . For every  $i \in I$ , there exists  $U_i \in \mathcal{U}$  such that  $V_i = U_i \cap Y$ . Therefore  $\bigcup_{i \in I} V_i = \bigcup_{i \in I} (U_i \cap Y) = \left(\bigcup_{i \in I} U_i\right) \cap Y \in \mathcal{V}$ . (*iii*) : If *I* is finite, then  $\bigcap_{i \in I} V_i = \bigcap_{i \in I} (U_i \cap Y) = \left(\bigcap_{i \in I} U_i\right) \cap Y \in \mathcal{V}$ .

**Definition 3.2.** Let *X* be a topological space,  $\mathscr{U}$  a topology on *X*, and *Y* a subset of *X*. The set  $\mathscr{V} = \{U \cap Y \mid U \in \mathscr{U}\}$  is called the **topology induced** on *Y* by the given topology of *X*. Equipped with this topology, *Y* is called a **topological subspace** of *X*.

*Example.* Consider  $\mathbb{R}$  with the usual topology. As  $\{n\} = \mathbb{Z} \cap \left(n - \frac{1}{2}, n + \frac{1}{2}\right)$ , every point set  $\{n\}$  of  $\mathbb{Z}$  is therefore open. Every subset of  $\mathbb{Z}$  is the union of point sets, then is open. Thus the topological subspace  $\mathbb{Z}$  of  $\mathbb{R}$  is discrete.

**Proposition 3.3.** *Let X be a topological space, Y a subspace of X, and A a subset of Y. The following conditions are equivalent:* 

- (i) A is closed in Y,
- (ii) A is the intersection with Y of a closed subset of X.

*Proof.*  $(i) \Rightarrow (ii)$ : The subset  $Y \setminus A$  is open in Y. Therefore there exists an open subset U of X such that  $Y \setminus A = U \cap Y$ . Thus  $A = (X \setminus U) \cap Y$ , and since  $X \setminus U$  is closed, we get the result.

 $(ii) \Rightarrow (i)$ : Suppose  $A = V \cap Y$  where V is closed subset of X. Then  $Y \setminus A = (X \setminus V) \cap Y$ . Since  $X \setminus V$  is open in X, then  $Y \setminus A$  is open in Y, and A is closed in Y.

**Proposition 3.4.** *Let* X *be a topological space,* Y *a subspace of* X*, and*  $x \in Y$ *. For a subset* A *of* Y*, the following conditions are equivalent:* 

(i) A is a neighborhood of x in Y,

(ii) A is the intersection with Y of a neighborhood of x in X.

*Proof.*  $(i) \Rightarrow (ii)$ : There exists an open subset *B* of *Y* such that  $x \in B \subseteq A$ . Then there exists an open subset *U* of *X* such that  $B = U \cap Y$ . Letting  $V = U \cup A$ , we have  $x \in V$ , thus *V* is a neighborhood of *x* in *X*. Besides,  $Y \cap V = (Y \cap U) \cup (Y \cap A) = B \cup A = A$ .

 $(ii) \Rightarrow (i)$ : Suppose  $A = Y \cap V$  where V is a neighborhood of x in X. There exists an open subset U of X such that  $x \in U \subseteq V$ . Then  $x \in Y \cap U \subseteq Y \subseteq V = A$ , and since  $Y \cap U$  is open in Y, thus A is neighborhood of x in Y.

**Proposition 3.5.** Let X be a topological space, and  $Y \subseteq X$ . If X is separated, then Y is separated.

*Proof.* Take two distinct points x, y of Y. There exist disjoint neighborhoods U and V of x and y respectively in X. We deduce from Proposition 3.4 that  $U \cap Y$  and  $V \cap Y$  are neighborhoods of x and y respectively in Y, and they are disjoint.

**Proposition 3.6.** Let X, Y, Z be topological spaces such that  $X \supseteq Y \supseteq Z$ . Assume  $\mathcal{U}$  is a topology on X,  $\mathcal{V}$  the topology induced by  $\mathcal{U}$  on Y, and  $\mathcal{W}$  the topology induced by  $\mathcal{V}$  on Z. Then  $\mathcal{W}$  is the topology induced by  $\mathcal{U}$  on Z.

*Proof.* Let  $\mathcal{W}'$  be the topology induced by  $\mathcal{U}$  on Z.

For  $W \in \mathcal{W}$ , there exist  $V \in \mathcal{V}$  such that  $W = V \cap Z$ , and  $U \in \mathcal{U}$  such that  $V = U \cap Y$ . Then  $W = U \cap Z$ , and consequently  $W \in \mathcal{W}'$ .

For  $W' \in \mathcal{W}'$ , there exists  $U \in \mathcal{U}$  such that  $W' = U \cap Z$ . If  $V = U \cap Y$ , then  $V \in \mathcal{V}$  and  $W' = V \cap Z$ . Therefore  $W' \in \mathcal{W}$ .

**Proposition 3.7.** Let X be a set equipped with a filter base  $\mathcal{B}$ , Y a topological space, Y' a subspace of Y,  $f: X \to Y'$  a function, and l a point of Y'. The following conditions are equivalent:

- (i) f tends to l along  $\mathcal{B}$  relative to Y',
- (ii) f tends to l along  $\mathcal{B}$  relative to Y.

*Proof.*  $(i) \Rightarrow (ii)$ : Let *V* be a neighborhood of *l* in *Y*. We know from Proposition 3.4 that  $V \cap Y'$  is a neighborhood of *l* in *Y'*. There exists  $B \in \mathscr{B}$  such that  $f(B) \subseteq V \cap Y'$ . Thus  $f(B) \subseteq V$ , and *f* consequently tends to *l* along  $\mathscr{B}$  relative to *Y*.

 $(ii) \Rightarrow (i)$ : Let V' be a neighborhood of l' in Y'. From Proposition 3.4, there exists a neighborhood V of l in Y such that  $V \cap Y' = V'$ . Besides, there exists  $B \in \mathscr{B}$  such that  $f(B) \subseteq V$ . Since  $f(X) \subseteq Y'$ , one has  $f(B) \subseteq V \cap Y'$  which is V'. Thus f tends to l along  $\mathscr{B}$  relative to Y.

**Corollary 3.8.** Let X, Y be topological spaces, Y' a subspace of Y, and  $f : X \to Y'$  a function. The following conditions are equivalent:

- (*i*) *f* is continuous,
- (*ii*) *f*, regarded as a function from X into Y, is continuous.

*Proof.* For every  $x_0 \in X$ , the condition  $\lim_{x \to x_0} f(x) = f(x_0)$  has the same meaning, according to Proposition 3.7 for the neighborhood filter of  $x_0$ , whether one considers f to have values in Y' or in Y.

#### **3.2** Products of Topological Spaces

**Proposition 3.9.** Let  $X_1, \ldots, X_n$  be topological spaces equipped with topologies  $\mathscr{U}_1, \ldots, \mathscr{U}_n$  respectively. The set  $\mathscr{U}$  formed by any union of elements in  $\mathscr{U}_1 \times \cdots \times \mathscr{U}_n$  is a topology on  $X = X_1 \times \cdots \times X_n$ .

*Proof.* (*i*): We have  $X = X_1 \times \cdots \times X_n \in \mathscr{U}_1 \times \cdots \times \mathscr{U}_n$  and  $\varnothing = \varnothing \times X_2 \times \cdots \times X_n \in \mathscr{U}_1 \times \cdots \times \mathscr{U}_n$ . (*ii*): From its definition, any union of elements in  $\mathscr{U}$  is a union of elements in  $\mathscr{U}_1 \times \cdots \times \mathscr{U}_n$ . (*iii*): Take  $A, B \in \mathscr{U}$ . We have  $A = \bigcup_{\alpha \in I} A_\alpha$  and  $B = \bigcup_{\beta \in J} B_\beta$  with  $A_\alpha, B_\beta \in \mathscr{U}_1 \times \cdots \times \mathscr{U}_n$ . Then

 $A \cap B = \bigcup_{\substack{\alpha \in I \\ \beta \in J}} A_{\alpha} \cap B_{\beta}$ . Setting  $A_{\alpha} = A_1 \times \cdots \times A_n$  and  $B_{\beta} = B_1 \times \cdots \times B_n$ , we get

$$A_{\alpha} \cap B_{\beta} = (A_1 \cap B_1) \times \cdots \times (A_n \cap B_n) \in \mathscr{U}_1 \times \cdots \times \mathscr{U}_n$$

**Definition 3.10.** Let  $X_1, ..., X_n$  be topological spaces equipped with topologies  $\mathcal{U}_1, ..., \mathcal{U}_n$  respectively. The topology  $\mathcal{U}$  on  $X = X_1 \times \cdots \times X_n$  formed by any union of elements in  $\mathcal{U}_1 \times \cdots \times \mathcal{U}_n$  is called the **product topology** of the given topologies on  $X_1, ..., X_n$ . Equipped with this topology, X is called the **product topological space** of the topological spaces  $X_1, ..., X_n$ .

**Proposition 3.11.** Let  $X = X_1 \times \cdots \times X_n$  be a product of topological spaces, and  $x = (x_1, \dots, x_n) \in X$ . The sets of the form  $V_1 \times \cdots \times V_n$ , where  $V_i$  is a neighborhood of  $x_i$  in  $X_i$ , constitute a fundamental system of neighborhoods of x in X.

*Proof.* For  $i \in \{1, ..., n\}$ , let  $V_i$  be a neighborhood of  $x_i$  in  $X_i$ . There exists an open subset  $A_i$  of  $X_i$  such that  $x_i \in A_i \subseteq V_i$ . Then  $x \in A_1 \times \cdots \times A_n \subseteq V_1 \times \cdots \times V_n$ . As  $A_1 \times \cdots \times A_n$  is open in X, thus  $V_1 \times \cdots \times V_n$  is a neighborhood of x in X.

Let *V* be a neighborhood of *x* in *X*. There exists an open subset *A* of *X* such that  $x \in A \subseteq V$ . By definition of the product topology, there exists an open subset  $A_i$  such that  $x_i \in A_i$  and  $A_1 \times \cdots \times A_n \subseteq A$ . Thus  $A_i$  is a neighborhood of  $x_i$  and  $A_1 \times \cdots \times A_n \subseteq V$ .

**Proposition 3.12.** Let  $X = X_1 \times \cdots \times X_n$  be a product of topological spaces. If each  $X_i$  is separated, then X is separated.

*Proof.* Let  $x = (x_1, ..., x_n)$  and  $y = (y_1, ..., y_n)$  be two distinct points of X. One has  $x_i \neq y_i$  for at least one  $i \in \{1, ..., n\}$ . If  $x_1 \neq y_1$  for example, there exist disjoint neighborhoods U and V of  $x_1$  and  $y_1$  respectively in  $X_1$ . Then  $U \times X_2 \times \cdots \times X_n$  and  $V \times X_2 \times \cdots \times X_n$  are disjoint neighborhoods of x and y respectively in X.

**Proposition 3.13.** Let X be a set equipped with a filter base  $\mathscr{B}$ ,  $Y = Y_1 \times \cdots \times Y_n$  a product of topological spaces, and  $l = (l_1, \ldots, l_n) \in Y$ . Consider a function  $f : X \to Y$ , that is, having the form  $x \mapsto (f_1(x), \ldots, f_n(x))$ , where  $f_i : X \to Y_i$  is also a function for  $i \in \{1, \ldots, n\}$ . Then, the following conditions are equivalent:

- (i) f tends to l along  $\mathcal{B}$ ,
- (*ii*)  $f_i$  tends to  $l_i$  along  $\mathscr{B}$ .

*Proof.*  $(i) \Rightarrow (ii)$ : Let us show, for example, that  $f_1$  tends to  $l_1$  along  $\mathscr{B}$ . If  $V_1$  is a neighborhood of  $l_1$ , then  $V_1 \times Y_2 \times \cdots \times Y_n$  is a neighborhood of l in Y. Therefore, there exists  $B \in \mathscr{B}$  such that  $f(B) \subseteq V_1 \times Y_2 \times \cdots \times Y_n$ . Thus  $f_1(B) \subseteq V$ , and  $f_1$  consequently tends to  $l_1$  along  $\mathscr{B}$ .

 $(ii) \Rightarrow (i)$ : Let *V* be a neighborhood of *l* in *Y*. We know from Proposition 3.11 that there exist neighborhoods  $V_1, \ldots, V_n$  of  $l_1, \ldots, l_n$  respectively in  $Y_1, \ldots, Y_n$  such that  $V_1 \times \cdots \times V_n \subseteq V$ . Then, there exist  $B_1, \ldots, B_n \in \mathscr{B}$  such that  $f_1(B_1) \subseteq V_1, \ldots, f_n(B_n) \subseteq V_n$ . Moreover, there exists  $B \in \mathscr{B}$  such that  $B \subseteq B_1 \cap \cdots \cap B_n$ . Then,  $f(B) \subseteq f_1(B_1) \times \cdots \times f_n(B_n) \subseteq V_1 \times \cdots \times V_n \subseteq V$ , and *f* consequently tends to *l* along  $\mathscr{B}$ .

**Proposition 3.14.** Let X be a topological space, and  $Y = Y_1 \times \cdots \times Y_n$  a product of topological spaces. Consider a function  $f : X \to Y$ , that is, having the form  $x \mapsto (f_1(x), \dots, f_n(x))$ , where  $f_i : X \to Y_i$  is also a function for  $i \in \{1, \dots, n\}$ . The following conditions are equivalent:

- (i) f is continuous,
- (*ii*)  $f_1, \ldots, f_n$  are continuous.

*Proof.* For every  $x_0 \in X$ , the conditions  $\lim_{x \to x_0} f(x) = f(x_0)$  and  $\lim_{x \to x_0} f_i(x) = f_i(x_0)$ , for  $i \in \{1, ..., n\}$ , are equivalent by Proposition 3.13 using the neighborhood filter of  $x_0$ .

#### **3.3 Quotient Spaces**

**Proposition 3.15.** Let X be a topological space with topology  $\mathcal{U}$ ,  $\mathcal{R}$  an equivalence relation on X, and c the canonical mapping from X onto  $X/\mathcal{R}$ . Then the set defined by  $\mathcal{V} := \{A \subseteq X/\mathcal{R} \mid c^{-1}(A) \in \mathcal{U}\}$  a topology on  $X/\mathcal{R}$ .

*Proof.* The set  $\emptyset$  and  $X/\mathscr{R}$  are open in  $X/\mathscr{R}$  since  $c^{-1}(\emptyset) = \emptyset$  and  $c^{-1}(X/\mathscr{R}) = X$ . The two other conditions follow, for a set  $\{A_i\}_{i \in I}$  included in  $\mathscr{V}$ , from the equations

$$c^{-1}\left(\bigcup_{i\in I}A_i\right) = \bigcup_{i\in I}c^{-1}(A_i) \quad \text{and} \quad c^{-1}\left(\bigcap_{i=1}^nA_i\right) = \bigcap_{i=1}^n c^{-1}(A_i).$$

**Definition 3.16.** Let *X* be a topological space with topology  $\mathcal{U}$ ,  $\mathcal{R}$  an equivalence relation on *X*, and *c* the canonical mapping from *X* onto *X*/ $\mathcal{R}$ . The topology  $\{A \subseteq X/\mathcal{R} \mid c^{-1}(A) \in \mathcal{U}\}$  on *X*/ $\mathcal{R}$  is called the **quotient topology** of the topology of *X* by  $\mathcal{R}$ . Equipped with this topology, *X*/ $\mathcal{R}$  is called the **quotient space** of *X* by  $\mathcal{R}$ .

**Proposition 3.17.** Let X be a topological space,  $\mathscr{R}$  an equivalence relation on X, c the canonical mapping from X onto  $X/\mathscr{R}$ , Y a topological space, and  $f: X/\mathscr{R} \to Y$  a function. The following conditions are equivalent:

- (i) f is continuous on  $X/\mathscr{R}$ ,
- (ii) the function  $f \circ c : X \to Y$  is continuous.

*Proof.*  $(i) \Rightarrow (ii)$ : The mapping c is continuous as, if A is open in  $X/\mathscr{R}$ , then  $c^{-1}(A)$  is open in X. Since f is also continuous, then  $f \circ c$  is continuous.

 $(ii) \Rightarrow (i)$ : Let *B* be an open subset of *Y*. Then  $c^{-1}(f^{-1}(B)) = (f \circ c)^{-1}(B)$  is open in *X*. Therefore  $f^{-1}(B)$  is open in *X*/ $\mathscr{R}$  by the definition of *c*. Thus *f* is continuous from Proposition 2.14.

### **Compact Spaces**

#### 4.1 Compact Spaces

**Definition 4.1.** Let *X* be a set, and *A* a subset of *X*. A family  $\mathscr{F}$  of subsets included in *X* is a **covering** of *A* if  $A \subseteq \bigcup_{U \in \mathscr{F}} U$ .

**Definition 4.2.** A topological space X is **compact** if, for any family  $\mathcal{O}$  of open subsets of X covering X, one can extract from  $\mathcal{O}$  a finite subfamily that again covers X. By passage to complements, this definition is equivalent, for any family  $\mathcal{C}$  of closed subsets of X having empty intersection, to the existence of a finite subfamily of  $\mathcal{C}$  having empty intersection.

**Proposition 4.3.** Let X be a topological space, and A a subspace of X. The following conditions are equivalent:

- (i) A is compact,
- (ii) if a family of open subsets of X covers A, one can extract from it a finite subfamily that again covers A.

*Proof.*  $(i) \Rightarrow (ii)$ : Let  $\{U_i\}_{i \in I}$  be a family of open subsets of X such that  $A \subseteq \bigcup_{i \in I} U_i$ . Every  $U_i \cap A$  is open in A, and the family  $\{U_i \cap A\}_{i \in I}$  covers A, so there exists a finite subset J of I such that  $A = \bigcup_{j \in J} (U_j \cap A)$ . The subfamily  $\{U_j\}_{j \in J}$  consequently covers A.

 $(ii) \Rightarrow (i)$ : Let  $\{V_i\}_{i \in I}$  be a family of open sets of A covering A. For every  $i \in I$ , there exists an open subset  $U_i$  of X such that  $V_i = U_i \cap A$ . Then  $\{U_i\}_{i \in I}$  covers A, there consequently exists a finite subset J of I such that  $\{U_j\}_{j \in J}$  covers A. Therefore  $\bigcup_{j \in J} V_j = A$ .

**Theorem 4.4** (Borel-Lebesgue). *Consider the space*  $\mathbb{R}$  *equipped with the usual topology, and let*  $a, b \in \mathbb{R}$  with  $a \leq b$ . Then the interval [a,b] is compact.

*Proof.* Let  $\{U_i\}_{i \in I}$  be a family of open subsets of  $\mathbb{R}$  covering [a,b], and A be the set of  $x \in [a,b]$  such that [a,x] is covered by a finite subfamily of  $\{U_i\}_{i \in I}$ . The set A is nonempty since  $a \in A$ . It is contained in [a,b], and therefore has a supremum m in [a,b]. There exists  $j \in I$  such that  $m \in U_j$ . Since  $U_j$  is open in  $\mathbb{R}$ , there exists  $\varepsilon > 0$  such that  $[m - \varepsilon, m + \varepsilon] \subseteq U_j$ . As m is the supremum of A, there exists  $x \in A$  such that  $m - \varepsilon \leq x \leq m$ . Then [a,x] is covered by a finite subfamily  $\{U_k\}_{k \in K}$ , and

with  $[x, m + \varepsilon] \subseteq U_j$ , we get  $[a, m + \varepsilon]$  covered by the finite subfamily  $\{U_k\}_{k \in K} \cup \{U_j\}$ . One sees that  $m + \varepsilon \in [a, b]$  contradicts the fact that *m* is the supremum in [a, b]. Hence m = b, and [a, b] is covered by a finite subfamily of  $\{U_i\}_{i \in I}$ . We deduce the compactness of [a, b] from Proposition 4.3.

#### 4.2 **Properties of Compact Spaces**

**Proposition 4.5.** Let X be a set equipped with a filter base  $\mathcal{B}$ , Y a compact space, and  $f : X \to Y$  a function. Then f admits at least one adherence value along  $\mathcal{B}$ .

*Proof.* Consider the family  $\{\overline{f(B)}\}_{B \in \mathscr{B}}$  of closed subsets of *Y*, and let  $A = \bigcap_{B \in \mathscr{B}} \overline{f(B)}$ . If  $A = \emptyset$ , there exist  $B_1, \ldots, B_n \in \mathscr{B}$  such that  $\overline{f(B_1)} \cap \cdots \cap \overline{f(B_n)} = \emptyset$  as *Y* is compact. Now, there exists  $B \in \mathscr{B}$  such

that  $B \subseteq B_1 \cap \cdots \cap B_n$ , whence  $f(B) \subseteq f(B_1) \cap \cdots \cap f(B_n)$ , and consequently  $f(B_1) \cap \cdots \cap f(B_n) \neq \emptyset$ . This contradiction proves that  $A \neq \emptyset$ , so we get the result by using Proposition 2.9.

**Proposition 4.6.** Let X be a set equipped with a filter base  $\mathcal{B}$ , Y a compact space,  $f : X \to Y$  a function, and A the set of adherence values of f along  $\mathcal{B}$ . Take an open subset U of Y containing A. Then, there exists  $B \in \mathcal{B}$  such that  $f(B) \subseteq U$ .

*Proof.* One has  $(Y \setminus U) \cap A = \emptyset$ , meaning that  $(Y \setminus U) \cap \bigcap_{B \in \mathscr{B}} \overline{f(B)} = \emptyset$ . Since Y is compact, there exist  $B_1, \ldots, B_n \in \mathscr{B}$  such that  $(Y \setminus U) \cap \overline{f(B_1)} \cap \cdots \cap \overline{f(B_n)} = \emptyset$ . Furthermore, there exist  $B \in \mathscr{B}$  such that  $B \subseteq B_1 \cap \cdots \cap B_n$ . Then  $(Y \setminus U) \cap \overline{f(B)} = \emptyset$ , implying  $\overline{f(B)} \subseteq U$ .

**Corollary 4.7.** Let X be a set equipped with a filter base  $\mathcal{B}$ , Y a compact space, and  $f : X \to Y$  a function. If f admits only one adherence value l along  $\mathcal{B}$ , then f tends to l along  $\mathcal{B}$ .

*Proof.* From Proposition 4.6, for any neighborhood V of l, there exists  $B \in \mathcal{B}$  such that  $f(B) \subseteq V$ .  $\Box$ 

**Proposition 4.8.** Let X be a compact space, and A a closed subspace of X. Then A is compact.

*Proof.* Let  $\{A_i\}_{i \in I}$  be a family of closed subsets of A with empty intersection. We know from Proposition 3.3 that each  $A_i$  is the intersection of A with a closed subset of X then is closed in X. Since X is compact, there exists a finite subfamily  $\{A_j\}_{j \in J}$  with empty intersection.

**Proposition 4.9.** Let X be a separated space, and A a compact subspace of X. Then A is closed in X.

*Proof.* Take  $x \in X \setminus A$ . For every  $y \in A$ , there exist open neighborhoods  $U_y, V_y$  of x, y respectively in X that are disjoint. We have  $A \subseteq \bigcup_{y \in A} V_y$ , and since A is compact, there exist  $y_1, \ldots, y_n \in A$  such that  $A \subseteq V_{y_1} \cup \cdots \cup V_{y_n}$ . The set  $U_{y_1} \cap \cdots \cap U_{y_n}$  is an open neighborhood of x contained in  $X \setminus A$ . It

follows that  $X \setminus A$  is neighborhood of each of its points, and is consequently open from Proposition 1.9. Therefore A is closed in X.

**Proposition 4.10.** Let X be a separated space.

- (i) If A, B are compact subsets of X, then  $A \cup B$  is compact.
- (ii) If  $\{A_i\}_{i \in I}$  is a nonempty family of compact subsets of X, then  $\bigcap_{i \in I} A_i$  is compact.

*Proof.* (*i*) : Let  $\{U_i\}_{i \in I}$  be a covering of  $A \cup B$  by open subsets of X. There exist finite subsets  $J_1, J_2$  of I such that  $\{U_j\}_{j \in J_1}$  covers A and  $\{U_j\}_{j \in J_2}$  covers B. Then  $\{U_j\}_{j \in J_1 \cup J_2}$  covers  $A \cup B$ , and we deduce from Proposition 4.3 that  $A \cup B$  is compact.

(*ii*): We know from Proposition 4.9 that each  $A_i$  is closed in X. Therefore  $\bigcap A_i$  is closed in X, and

consequently in each  $A_i$ . Since each  $A_i$  is compact, then  $\bigcap A_i$  is compact by Proposition 4.8. 

**Proposition 4.11.** Let X be a separated compact space. Every point of X has a fundamental system of compact neighborhoods.

*Proof.* Take a point  $x_0$  and an open neighborhood A of  $x_0$  in X. The sets  $\{x_0\}$  and  $X \setminus A$  are disjoint compact subsets of X. For every  $x \in X \setminus A$ , there exist disjoint open subsets  $U_x, V_x$  of X such that  $x_0 \in U_x$ and  $x \in V_x$ . Since  $X \setminus A \subseteq \bigcup V_x$ , there exists  $x_1, \ldots, x_n \in X \setminus A$  such that  $X \setminus A \subseteq V_{x_1} \cup \cdots \cup V_{x_n}$ . Then,  $x \in X \setminus A$ 

 $U = U_{x_1} \cap \cdots \cap U_{x_n}$  and  $V = V_{x_1} \cup \cdots \cup V_{x_n}$  are disjoint open subsets of X such that  $x_0 \in U$  and  $X \setminus A \subseteq V$ . Hence  $\overline{U}$  is a compact neighborhood of  $x_0$ . We have  $U \subseteq X \setminus V$ , therefore  $\overline{U} \subseteq X \setminus V$  as  $X \setminus V$  is closed, and consequently  $\overline{U} \subseteq A$ .

**Proposition 4.12.** Let X be a compact space, Y a topological space, and  $f: X \to Y$  a continuous function. Then f(X) is compact.

*Proof.* Let  $\{U_i\}_{i \in I}$  be a family of open subsets of Y covering f(X). Since f is continuous, then each  $f^{-1}(U_i)$  is an open subset of X from Proposition 2.14. Moreover,  $X = \bigcup f^{-1}(U_i)$ , then there exists a finite subset J of I such that  $X = \bigcup_{j \in J} f^{-1}(U_j)$ . Hence  $\{U_j\}_{j \in J}$  covers f(X), and f(X) is therefore 

compact.

**Corollary 4.13.** Let X be a compact space, Y a separated space, and  $f: X \to Y$  a continuous bijective function. Then f is a homeomorphism of X onto Y.

*Proof.* If A is a closed subset of X, then A is compact from Proposition 4.8, therefore f(A) is compact from Proposition 4.12, and consequently closed from Proposition 4.9. We deduce from Proposition 2.14 that  $f^{-1}$  is continuous. 

**Theorem 4.14.** The product of a finite number of compact spaces is compact.

*Proof.* It suffices to show that if X and Y are compact, then  $X \times Y$  is compact. Let  $\{U_i\}_{i \in I}$  be a covering of  $X \times Y$  with open subsets. For every  $m = (x, y) \in X \times Y$ , fix an open set  $U_m$  such that  $m \in U_m$ . By Proposition 3.11, there exist an open neighborhood  $V_m$  of x in X and an open neighborhood  $W_m$  of y in *Y* such that  $V_m \times W_m \subseteq U_m$ .

For a fixed  $x_0 \in X$ ,  $\{x_0\} \times Y$  is homeomorphic to Y. Indeed, the function  $y \mapsto (x_0, y)$  of Y onto  $\{x_0\} \times Y$ is bijective. It is continuous from Y into  $X \times Y$  by Proposition 3.14, therefore from Y into  $\{x_0\} \times Y$  by Corollary 3.8. Its inverse function is the composite of the canonical injection of  $\{x_0\} \times Y$  into  $X \times Y$ , which is continuous from Corollary 3.8 once again, and of the canonical projection of  $X \times Y$  onto Y, which is also continuous from Proposition 3.14. The set  $\{x_0\} \times Y$  is then compact.

The family of open subsets  $\{V_m \times W_m\}_{m \in \{x_0\} \times Y}$  is a covering of  $\{x_0\} \times Y$ , so there consequently exist finite points  $m_1, \ldots, m_n \in \{x_0\} \times Y$  such that  $\{x_0\} \times Y \subseteq (V_{m_1} \times W_{m_1}) \cup \cdots \cup (V_{m_n} \times W_{m_n})$ . The intersection  $A_{x_0} = V_{m_1} \cap \cdots \cap V_{m_n}$  is an open neighborhood of  $x_0$ . For every  $(x, y) \in A_{x_0} \times Y$ , there exists  $k \in \{1, ..., n\}$  such that  $(x, y) \in V_{m_k} \times W_{m_k}$ , hence  $A_{x_0} \times Y$  is covered by a finite subset of  $\{U_i\}_{i \in I}$ . Now  $\{A_{x_0}\}_{x_0 \in X}$  forms a covering of X, from which one can extract a finite covering of open subsets  $\{A_{x_1}, ..., A_{x_p}\}$ . Each  $A_{x_j} \times Y$ , with  $j \in \{1, ..., p\}$ , is covered by a finite subset of  $\{U_i\}_{i \in I}$ , therefore  $X \times Y$  is covered by a finite subset of  $\{U_i\}_{i \in I}$ .

#### 4.3 Locally Compact Spaces

**Definition 4.15.** A topological space X is said to be **locally compact** if every point of X admits a compact neighborhood.

*Example.* Consider the product topological space  $\mathbb{R}^n$ , where  $\mathbb{R}$  is equipped with the usual topology, and take  $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ . We know from the theorem of Borel-Lebesgue that, for every  $i \in \{1, \ldots, n\}$ ,  $[x_i - 1, x_i + 1]$  is a compact neighborhood of  $x_i$  in  $\mathbb{R}$ . Then, by Proposition 3.11 and Theorem 4.14,  $[x_1 - 1, x_1 + 1] \times \cdots \times [x_n - 1, x_n + 1]$  is a compact neighborhood of x. The topological space  $\mathbb{R}^n$  is therefore locally compact.

**Proposition 4.16.** Let X be a separated space. The following conditions are equivalent:

- (*i*) X is locally compact,
- (*ii*) every point of X admits a fundamental system of compact neighborhoods.

*Proof.* We obviously have  $(ii) \Rightarrow (i)$ . We only prove  $(i) \Rightarrow (ii)$ : Let  $x \in X$  and V be a compact neighborhood of x. We know from Proposition 4.11 that x admits in V a fundamental system  $\{V_i\}_{i \in I}$  of compact neighborhoods. We deduce from Proposition 3.4 that  $\{V_i\}_{i \in I}$  is a fundamental system of compact neighborhoods of x in X.

**Proposition 4.17.** Let X be a locally compact space, and Y a subspace of X.

- (*i*) If Y is closed, then Y is locally compact.
- (ii) If X is separated and Y is open, then Y is locally compact.

*Proof.* Let  $x \in Y$  and V a compact neighborhood of x in X. Then  $V \cap Y$  is a neighborhood of x in Y. (*i*): We know from Proposition 3.3 that  $V \cap Y$  is closed in V, hence is compact by Proposition 4.8.

(*ii*) : As *Y* is a neighborhood of *x*, we can suppose from Proposition 4.16 that  $V \subseteq Y$ , and then *V* is a compact neighborhood of *x* in *Y*.

**Proposition 4.18.** Let  $X_1, ..., X_n$  be locally compact spaces, and  $X = X_1 \times \cdots \times X_n$ . Then X is locally compact.

*Proof.* Take  $x = (x_1, ..., x_n) \in X$ . For every  $i \in \{1, ..., n\}$ , there exists a compact neighborhood  $V_i$  of  $x_i$  in  $X_i$ . Then  $V_1 \times \cdots \times V_n$  is a neighborhood of x in X is compact by Theorem 4.14.

### **Connected Spaces**

#### 5.1 **Connected Spaces**

**Definition 5.1.** A topological space X is said to be **connected** if there does not exist a pair (A, B) of disjoint nonempty open subsets of X such that  $X = A \sqcup B$ . By passage to complements, this definition is equivalent to the nonexistence of a pair (A, B) of disjoint nonempty closed subsets of X such that  $X = A \sqcup B$ . It is also equivalent to the nonexistence of a subset of X, distinct from X and  $\varnothing$ , that is both open and closed.

**Proposition 5.2.** The topological space  $\mathbb{R}$  equipped with the usual topology is connected.

*Proof.* Let A be an open and closed subset of  $\mathbb{R}$ , and assume A and  $\mathbb{R} \setminus A$  nonempty. Taking  $x \in \mathbb{R} \setminus A$ , one of the sets  $A \cap [x, +\infty)$  and  $A \cap (-\infty, x]$  is nonempty. Suppose that  $B = A \cap [x, +\infty) \neq \emptyset$ . Then B is closed. Since it is bounded below, then it has a smallest element as its infimum b is adherent to B. Besides, since  $B = A \cap (x, +\infty)$ , then B is also open. Hence B contains an interval  $(b - \varepsilon, b + \varepsilon)$  with  $\varepsilon > 0$ . That contradicts the fact that *b* is the smallest element of *B*. 

**Definition 5.3.** Let X be a topological space and  $Y \subseteq X$ . One says that Y is a **connected subset** of X if the topological space Y is connected.

*Example.* The subspace  $\mathbb{Q}$  of  $\mathbb{R}$  is not connected. Take indeed an element  $x \in \mathbb{R} \setminus \mathbb{Q}$  such as  $\sqrt{2}$  or  $\pi$ . Then  $\mathbb{Q} = ((-\infty, x) \cap \mathbb{Q}) \sqcup ((x, +\infty) \cap \mathbb{Q})$  which are two disjoint open subsets of  $\mathbb{Q}$ .

**Proposition 5.4.** Let X be a topological space,  $\{A_i\}_{i \in I}$  a family of connected subsets of X, and A the set  $\bigcup A_i$ . If the  $A_i$  intersect pairwise, then A is connected. i∈I

*Proof.* Suppose A is not connected. There exist nonempty subsets  $U, V \subseteq A$  open in A such that  $V = A \setminus U$ . For every  $i \in I$ ,  $U \cap A_i$  and  $V \cap A_i$  are both open and complementary in  $A_i$ . Since  $A_i$  is connected, then  $U \cap A_i = \emptyset$  or  $V \cap A_i = \emptyset$ . Let  $I_U$  and  $I_V$  be the set of  $i \in I$  such that  $A_i \subseteq U$  and  $A_i \subseteq V$  respectively. Then,  $U = \bigcup_{i \in I_U} A_i$  and  $V = \bigcup_{i \in I_V} A_i$ . Therefore, there exist  $i, j \in I, i \neq j$ , such that  $A_i$  and  $A_j$  are disjoint, which is a contradiction.

**Corollary 5.5.** Let X be a topological space, and  $A_1, \ldots, A_n$  connected subspaces of X such that  $A_i \cap A_{i+1} \neq \emptyset$  if  $i \in \{1, \dots, n\}$ . Then,  $A_1 \cup \dots \cup A_n$  is connected.

*Proof.* The proof is by induction. We suppose that  $A_1 \cup \cdots \cup A_{n-1}$  is connected. As  $A_{n-1} \cap A_n \neq \emptyset$ , we deduce from Proposition 5.4 that  $A_1 \cup \cdots \cup A_n$  is connected.

**Proposition 5.6.** Let X be a topological space, A a connected subset of X, and B a subset of X such that  $A \subseteq B \subseteq \overline{A}$ . Then B is connected.

*Proof.* Suppose that *B* is the union of subsets *U*, *V* that are disjoint and open in *B*. There exist open sets U', V' in *X* such that  $U = B \cap U'$  and  $V = B \cap V'$ . The sets  $A \cap U$  and  $A \cap V$  are then open and complementary in *A*. Since *A* is connected, we have for example  $A \cap U = \emptyset$ , then  $A \cap U' = \emptyset$ , in other words  $A \subseteq X \setminus U'$ . Since  $X \setminus U'$  is closed, then  $\overline{A} \subseteq X \setminus U'$ . So  $B \cap U' = \emptyset$ , implying  $U = \emptyset$ .

**Proposition 5.7.** Let X, Y be topological spaces and f a continuous function from X into Y. If X is connected, then f(X) is connected.

*Proof.* If f(X) is not connected, it has nonempty open subsets  $U, V \subseteq f(X)$  that are complementary. So  $f^{-1}(U), f^{-1}(V) \subseteq X$  are nonempty open subsets that are complementary, which is absurd.  $\Box$ 

**Proposition 5.8.** *Consider*  $\mathbb{R}$  *equipped with the usual topology, and*  $A \subseteq R$ *. The following conditions are equivalent:* 

- (i) A is connected,
- (*ii*) A is an interval.

*Proof.* We can assume that A is nonempty and not reduced to a point.

 $(ii) \Rightarrow (i)$ : If *A* is open, then *A* is homeomorphic to  $\mathbb{R}$ , and consequently connected by Proposition 5.2. If *A* is an arbitrary interval, then  $A^{\circ} \subseteq A \subseteq \overline{A}$ , and consequently connected by Proposition 5.6.

 $(i) \Rightarrow (ii)$ : Suppose that *A* is not an interval. There exist  $a, b \in A$  and  $x_0 \in \mathbb{R} \setminus A$  such that  $a < x_0 < b$ . Then *A* is the union of the sets  $A \cap (-\infty, x_0)$  and  $A \cap (x_0, +\infty)$  which are open in *A*. Since *A* is connected,  $A \cap (x_0, +\infty)$  for example is empty. Then  $x < x_0$  for all  $x \in A$ , which contradicts  $b \in A$ .  $\Box$ 

**Proposition 5.9.** Let X be a connected topological space,  $f : X \to \mathbb{R}$  a continuous function, and  $a, b \in X$ . Then f takes on every value between f(a) and f(b).

*Proof.* The set f(X) is a connected subset of  $\mathbb{R}$  by Proposition 5.7, hence is an interval of  $\mathbb{R}$  by Proposition 5.8. This interval contains f(a) and f(b), hence all numbers between them.

#### 5.2 Connected Components

**Proposition 5.10.** Let X be a topological space, and  $x \in X$ . Among the connected subspaces of X containing x, there exists one that is larger than all the others.

*Proof.* The union of all the connected subsets of *X* containing *x* is connected by Proposition 5.4, and is obviously the largest of the connected subsets of *X* containing *x*.  $\Box$ 

**Definition 5.11.** Let *X* be a topological space and  $x \in X$ . The largest connected subset of *X* containing *x* is called the **connected component** of *x* in *X*.

*Example.* The topological spaces  $X = \mathbb{R} \setminus \{0\}$  and  $Y = \mathbb{R} \setminus \{0, 1\}$  are not homeomorphic, since X has the two connected components  $(-\infty, 0), (0, +\infty)$ , while Y the has three  $(-\infty, 0), (0, 1), (1, +\infty)$ .

**Proposition 5.12.** *Let X be a topological space.* 

(*i*) Every connected component of X is closed in X.

*(ii) Two distinct connected components are disjoint.* 

*Proof.* (*i*) : If  $A_x$  is the connected component of *x*, then  $\overline{A_x}$  is connected by Proposition 5.6. But  $A_x$  is the largest connected subset of *X* containing *x*, hence  $\overline{A_x} = A_x$ .

(*ii*) : Let  $A_x, A_y$  be connected components that are not disjoint. Then  $A_x \cup A_y$  is connected by Proposition 5.4. Since  $x \in A_x \cup A_y$ , then  $A_x \cup A_y \subseteq A_x$ , hence  $A_y \subseteq A_x$ . Similarly  $A_x \subseteq A_y$ , therefore  $A_x = A_y$ .  $\Box$ 

**Proposition 5.13.** *Let X be a topological space. If every point of X has a connected neighborhood, the connected components of X are open.* 

*Proof.* Let *C* be a connected component of *X*,  $x \in C$ , and *V* a connected neighborhood of *x*. Since  $x \in C \cap V$ , the union  $C \cup V$  is then connected, and  $C \cup V \subseteq C$ . Hence  $V \subseteq C$ , and *C* is a neighborhood of *x*. We deduce from Proposition 1.9 that *C* is open.

#### 5.3 Locally Connected Spaces

**Definition 5.14.** A topological space X is said to be **locally connected** at its point x if x has a fundamental system of connected neighborhoods. If X is locally connected at each of its points, it is said to be locally connected.

*Example.* The topological space  $\mathbb{R} \setminus \{0\}$  is not connected, but it is locally connected.

**Proposition 5.15.** Let X be a topological space. The following conditions are equivalent:

- (i) X is locally connected,
- (ii) for every open set V of X, each connected component of V is open in X.

*Proof.*  $(i) \Rightarrow (ii)$ : Let *C* be a connected component of an open set *V* in *X*, and  $x \in C$ . We can choose a connected neighborhood *U* of *x* such that  $U \subseteq V$ . Since *U* is connected, it must lie entirely in *C*. We deduce from Proposition 1.9 that *C* is open.

 $(ii) \Rightarrow (i)$ : Given  $x \in X$ , a neighborhood *V* of *x* in *X*, and open set *U* such that  $x \in U$  and  $U \subseteq V$ . Let *C* be the connected component of *U* containing *x*. Since *C* is connected and open in *X*, then it is a connected neighborhood of *x* contained in *V*.

### 5.4 Path Connected Spaces

**Definition 5.16.** Let X be a topological space and  $a, b \in X$ . A continuous map f from [0,1] into X such that f(0) = a and f(1) = b is called a **path** in X with **origin** a and **extremity** b. If any two points of X are the origin and extremity of a path in X, X is said to be **path connected**.

*Example.* The open unit *n*-ball  $\mathbb{B}^n := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 < 1\}$  is path connected. Indeed, any points  $x, y \in \mathbb{B}^n$  can be connected by the straight-line path  $f : [0, 1] \to \mathbb{B}^n$  defined by

$$f(t) = (1-t)x + ty.$$

**Proposition 5.17.** Let X be an path connected topological space. Then X is connected.

*Proof.* Take a point  $x_0 \in X$ . For every  $x \in X$ , let  $f_x : [0,1] \to X$  be a path with origin  $x_0$  and extremity x. Since [0,1] is connected by Proposition 5.8, then  $f_x([0,1])$  is connected by Proposition 5.7. Therefore  $X = \bigcup_{x \in X} f_x([0,1])$  is connected by Proposition 5.4, as  $x_0$  belongs to all of the  $f_x([0,1])$ .

**Proposition 5.18.** Let X be a topological space, and  $A, B \subseteq X$ . If A, B are path connected such that  $A \cap B \neq \emptyset$ , then  $A \cup B$  is path connected.

*Proof.* Let  $x \in A$ ,  $y \in B$ , and pick  $z \in A \cap B$ . Choose paths  $f : [0,1] \to A$ ,  $g : [0,1] \to B$  such that f(0) = x, f(1) = z, and g(0) = z, g(1) = y. We obtain a path  $h : [0,1] \to A \cup B$  from x to y as follows:

$$h(t) = \begin{cases} f(2t) & \text{if } t \in [0, \frac{1}{2}], \\ g(2t-1) & \text{if } t \in [\frac{1}{2}, 1]. \end{cases}$$

**Proposition 5.19.** Let X, Y be topological spaces, and  $f : X \to Y$  a continuous function. If X is path connected, then f(X) is path connected.

*Proof.* If  $y_1, y_2 \in f(X)$ , there exist  $x_1, x_2 \in X$  such that  $f(x_1) = y_1$  and  $f(x_2) = y_2$ . As X is path connected, there exists a path  $h : [0, 1] \to X$  from  $x_1$  to  $x_2$ . Hence  $f \circ h : [0, 1] \to Y$  is a path from  $y_1$  to  $y_2$ .

#### 5.5 Locally Path-Connected Spaces

**Definition 5.20.** A topological space X is said to be **locally path connected** at its point x if x has a fundamental system of path-connected neighborhoods. If X is locally path connected at each of its points, it is said to be locally path connected.

**Definition 5.21.** Let *X* be a topological space and  $x \in X$ . The **path component** of *x* in *X* is the set formed by the points  $y \in X$  such that a path with origin *x* and extremity *y* in *X* exists.

**Proposition 5.22.** Let X be a topological space. The following conditions are equivalent:

- (*i*) X is locally path connected,
- (*ii*) for every open set V of X, each path component of V is open in X.

*Proof.*  $(i) \Rightarrow (ii)$ : Let *C* be a path component of an open set *V* in *X*, and  $x \in C$ . We can choose a path-connected neighborhood *U* of *x* such that  $U \subseteq V$ . Since *U* is path connected, it must lie entirely in *C*. We deduce from Proposition 1.9 that *C* is open.

 $(ii) \Rightarrow (i)$ : Given  $x \in X$ , a neighborhood V of x in X, and open set U such that  $x \in U$  and  $U \subseteq V$ . Let C be the path component of U containing x. Since C is path connected and open in X, then it is a path-connected neighborhood of x contained in V.

### **Metric Spaces**

#### 6.1 Metric Spaces

**Definition 6.1.** A metric on a set *X* is a function  $d: X \times X \to \mathbb{R}_+$  satisfying the following conditions:

- (*i*) d(x, y) = 0 if and only if x = y,
- (*ii*) d(x,y) = d(y,x) for all  $x, y \in X$ ,
- (*iii*)  $d(x,z) \le d(x,y) + d(y,z)$  for all  $x, y, z \in X$ .

A set equipped with a metric is called a **metric space**.

*Example.* Let  $x = (x_1, ..., x_n) \in \mathbb{R}^n$ ,  $y = (x_1, ..., x_n) \in \mathbb{R}^n$ , and set  $d(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$ . It is known that d is a metric on  $\mathbb{R}^n$ , and in this way  $\mathbb{R}^n$  becomes a metric space.

**Definition 6.2.** Let *X* be a set equipped with a metric *d*, and  $Y \subseteq X$ . Then *Y* becomes a metric space with the restriction of *d* to  $Y \times Y$ , and is called a **metric subspace** of *X*.

**Definition 6.3.** Let *X* be a metric space with metric *d*, take  $a \in X$ , and  $\rho \in \mathbb{R}^*_+$ . The set  $B(a, \rho) := \{x \in X \mid d(a,x) < \rho\}$  is called an **open ball** with center *a* and radius  $\rho$ . A subset  $A \subseteq X$  is said to be **open** if, for each  $x_0 \in A$ , there exists  $\varepsilon \in \mathbb{R}^*_+$  such that  $B(x_0, \varepsilon) \subseteq A$ .

**Definition 6.4.** Let *X* be a metric space, and  $A \subseteq X$ . One says that *A* is **closed** if  $X \setminus A$  is open.

**Proposition 6.5.** *Every metric space X is a topological space, and the topology of X is formed by the open sets of X.* 

*Proof.* Let X be a metric space. The subsets  $\emptyset$  and X of X are clearly open.

Take a family  $\{A_i\}_{i \in I}$  of open subsets of *X*. Let  $A = \bigcup_{i \in I} A_i$ , and  $x_0 \in A$ . There exists  $i \in I$  such that  $x_0 \in A_i$ . Hence, there exists  $\varepsilon \in \mathbb{R}^*_+$  such that  $B(x_0, \varepsilon) \subseteq A_i \subseteq A$ . Thus *A* is open.

Suppose now that *I* is finite. Let  $C = \bigcap_{i \in I} A_i$ , and  $x_0 \in C$ . For every  $i \in I$ , there exists  $\varepsilon_i \in \mathbb{R}^*_+$  such that  $B(x_0, \varepsilon_i) \subseteq A_i$ . If  $\varepsilon \in \inf \{\varepsilon_i\}_{i \in I}$ , then  $B(x_0, \varepsilon) \subseteq A_i$  for every  $i \in I$ . Hence  $B(x_0, \varepsilon) \subseteq C$ , and *C* is consequently open.

**Proposition 6.6.** Let X be a set, and d, d' metrics on X. Suppose there exist  $c, c' \in \mathbb{R}^*_+$  such that

$$c d(x, y) \le d'(x, y) \le c' d(x, y)$$

for all  $x, y \in X$ . The open subsets of X are the same for d and d'.

*Proof.* Let *A* be a subset of *X* that is open for *d*, and  $x_0 \in A$ . There exists  $\varepsilon \in \mathbb{R}^*_+$  such that  $\{x \in X \mid d(x_0, x) < \varepsilon\} \subseteq A$ . If  $x \in X$  satisfies  $d'(x_0, x) < c\varepsilon$ , then  $d(x_0, x) < \varepsilon$ , so  $x \in A$ . Hence *A* is also open for *d'*. On the other side, one proves that if *A* is open for *d'*, then *A* is open for *d* by interchanging the roles of *d* and *d'*.

### 6.2 Continuity of the Metric

**Proposition 6.7.** *Let X be a metric space. Its metric*  $d : X \times X \to \mathbb{R}_+$  *is continuous.* 

*Proof.* Let  $(x_0, y_0) \in X \times X$ , and take  $\varepsilon \in \mathbb{R}^*_+$ . The set  $B(x_0, \frac{\varepsilon}{2}) \times B(y_0, \frac{\varepsilon}{2})$  is a neighborhood of  $(x_0, y_0)$  in  $X \times X$ . If  $(x, y) \in B(x_0, \frac{\varepsilon}{2}) \times B(y_0, \frac{\varepsilon}{2})$ , then

$$d(x, y) \le d(x, x_0) + d(x_0, y_0) + d(y_0, y) < \frac{\varepsilon}{2} + d(x_0, y_0) + \frac{\varepsilon}{2} = d(x_0, y_0) + \varepsilon,$$
  
$$d(x_0, y_0) \le d(x_0, x) + d(x, y) + d(y, y_0) < \frac{\varepsilon}{2} + d(x, y) + \frac{\varepsilon}{2} = d(x, y) + \varepsilon,$$

therefore  $|d(x, y) - d(x_0, y_0)| < \varepsilon$ . So *d* is continuous at  $(x_0, y_0)$ .

**Definition 6.8.** Let *X* be a metric space, and *A* a nonempty subset of *X*. One calls **diameter** of *A* the number diam(*A*) := sup  $\{d(x, y) \mid x, y \in A\}$ .

**Lemma 6.9.** Consider  $\mathbb{R}$  with the usual topology, and let A be a nonempty subset of  $\mathbb{R}$ . Suppose that A is bounded above, and x its supremum. Then x is the largest element of  $\overline{A}$ .

*Proof.* Let *V* be a neighborhood of *x* in  $\mathbb{R}$ , and  $\varepsilon \in \mathbb{R}^*_+$  such that  $(x - \varepsilon, x + \varepsilon) \subseteq V$ . By definition of the supremum, there exists  $y \in A$  such that  $x - \varepsilon < y \le x$ . Then  $y \in V$ , meaning that  $V \cap A \neq \emptyset$ , thus *x* is adherent to *A*.

Let  $x' \in \overline{A}$  such that x' > x, and set  $\varepsilon = x' - x > 0$ . Then  $(x' - \varepsilon, x' + \varepsilon)$  is a neighborhood of x', therefore intersects *A*. Let  $y \in (x' - \varepsilon, x' + \varepsilon) \cap A$ . Since  $y > x' - \varepsilon = x$ , *x* is then not an upper bound for *A*, which is absurd. So, *x* is the largest element of  $\overline{A}$ .

**Proposition 6.10.** Let X be a metric space, and  $A \subseteq X$ . The sets A and  $\overline{A}$  have the same diameter.

*Proof.* Denote *d* the metric of *X*. Let  $D = \{d(x, y) \mid x, y \in A\}$  and  $D' = \{d(x, y) \mid x, y \in \overline{A}\}$ . We obviously have  $D \subseteq D'$ . One deduce from Proposition 3.11 that every point of  $\overline{A} \times \overline{A}$  is adherent to  $A \times A$ . So  $D' = d(\overline{A} \times \overline{A}) \subseteq d(\overline{A \times A})$ , and  $d(\overline{A \times A}) \subseteq \overline{d(A \times A)} = \overline{D}$  by Proposition 2.14 and Proposition 6.7. Then  $D' \subseteq \overline{D}$ , and consequently  $\overline{D} = \overline{D'}$ . If *D* is bounded, we then deduce from Lemma 6.9 that the diameter of *A* and  $\overline{A}$  is the largest element of  $\overline{D}$ . If *D* is unbounded, then *D* and D' have the same supremum  $+\infty$ .

**Definition 6.11.** Let *X* be a metric space with metric *d*, and *A*, *B* two nonempty subsets of *X*. The **distance** from *A* to *B* the number  $d(A, B) := \inf \{ d(x, y) \mid x \in A, y \in B \}$ . It is clear that d(A, B) and d(B, A) are equal. If  $z \in X$ , we define  $d(z, A) := \inf \{ d(z, x) \mid x \in A \}$ .

#### 6.3 Sequences in Metric Spaces

**Proposition 6.12.** Let X be a metric space,  $x \in X$ , and  $A \subseteq X$ . The following conditions are equivalent:

- (*i*)  $x \in \overline{A}$ ,
- (ii) there is a sequence  $(x_n)_{n \in \mathbb{N}}$  of points in A that tends to x.

*Proof.*  $(ii) \Rightarrow (i)$ : Since every neighborhood of *x* intersects  $\{x_n\}_{n \in \mathbb{N}}$ , then every neighborhood of *x* intersects *A* which means that  $x \in \overline{A}$ .

 $(i) \Rightarrow (ii)$ : For every  $n \in \mathbb{N}$ , there exists a point  $x_n \in A \cap B(x, \frac{1}{n})$ . Then  $(x_n)_{n \in \mathbb{N}}$  tends to x.

**Proposition 6.13.** Let X be a metric space,  $(x_n)_{n \in \mathbb{N}}$  a sequence of points in X, and  $x \in X$ . The following conditions are equivalent:

- (*i*) *x* is an adherence value of  $(x_n)_{n \in \mathbb{N}}$  along the filter base  $\{\{n, n+1, \ldots\}\}_{n \in \mathbb{N}}$ ,
- (ii) there exists an infinite subset  $\{x_{n_k}\}_{k\in\mathbb{N}}$  of  $\mathbb{N}$ , with  $n_k < n_{k+1}$ , such that  $(x_{n_k})_{k\in\mathbb{N}}$  tends to x along the filter base  $\{\{n_k, n_{k+1}, \ldots\}\}_{k\in\mathbb{N}}$ .

*Proof.*  $(ii) \Rightarrow (i)$ : The point *x* is then an adherence value of  $(x_{n_k})_{k \in \mathbb{N}}$ , and consequently of  $(x_n)_{n \in \mathbb{N}}$ .  $(i) \Rightarrow (ii)$ : If *d* is the metric of *X*, there exist  $n_1 \in \mathbb{N}$  such that  $d(x_{n_1}, x) < 1$ ,  $n_2 \in \mathbb{N}$  such that  $n_2 > n_1$ and  $d(x_{n_2}, x) < \frac{1}{2}$ ,  $n_3 \in \mathbb{N}$  such that  $n_3 > n_2$  and  $d(x_{n_3}, x) < \frac{1}{3}$ , and so on. So, the sequence  $(x_{n_k})_{k \in \mathbb{N}}$ tends to *x* along  $\{\{n_k, n_{k+1}, \dots\}\}_{k \in \mathbb{N}}$ .

**Proposition 6.14.** Let X, Y be metric spaces,  $A \subseteq X$ ,  $f : A \to Y$  a function,  $a \in \overline{A}$ , and  $y \in Y$ . The following conditions are equivalent:

- (*i*) the point y is an adherence value of f along the filter  $\{A \cap V\}_{V \in \mathcal{V}}$ , where  $\mathcal{V}$  is a fundamental system of neighborhoods of a,
- (ii) there exists a sequence  $(x_n)_{n\in\mathbb{N}}$  in A such that  $(x_n)_{n\in\mathbb{N}}$  tends to a and  $(f(x_n))_{n\in\mathbb{N}}$  tends to y.

*Proof.*  $(ii) \Rightarrow (i)$ : On one side, if  $V \in \mathscr{V}$ , there exists  $i \in \mathbb{N}$  such that  $x_n \in A \cap V$  if  $n \ge i$ . On the other side, if W is a neighborhood of y, there exists  $j \in \mathbb{N}$  such that  $f(x_n) \in W$  if  $n \ge j$ . Then,  $f(x_n) \in f(A \cap V) \cap W$  if  $n \ge \max\{i, j\}$ .

 $(i) \Rightarrow (ii)$ : Denote by  $B_X(a, \rho)$  and  $B_Y(y, \rho')$  the open balls of centers and radius a, y and  $\rho, \rho'$ respectively. Take a point  $x_1 \in B_X(a, 1) \cap A$  such that  $f(x_1) \in B_Y(y, 1)$ , take a point  $x_2 \in B_X(a, \frac{1}{2}) \cap A$ such that  $f(x_2) \in B_Y(y, \frac{1}{2})$ , take a point  $x_3 \in B_X(a, \frac{1}{3}) \cap A$  such that  $f(x_3) \in B_Y(y, \frac{1}{3})$ , and so on. Hence, the sequence  $(x_n)_{n \in \mathbb{N}}$  tends to a, and  $(f(x_n))_{n \in \mathbb{N}}$  tends to y.

**Proposition 6.15.** Let X, Y be metric spaces,  $f : X \to Y$  a function, and  $x \in X$ . The following conditions are equivalent:

(i) f is continuous at x,

(ii) for every sequence  $(x_n)_{n\in\mathbb{N}}$  in X that tends to x, the sequence  $(f(x_n))_{n\in\mathbb{N}}$  tends to f(x).

*Proof.*  $(i) \Rightarrow (ii)$ : Consider the filter base  $\{\{x_n, x_{n+1}, \ldots\}\}_{n \in \mathbb{N}}$  and a neighborhood V of f(x) in Y. There exists a neighborhood U of x in X such that  $f(U) \subseteq V$ . And there exists  $k \in \mathbb{N}$  such that  $\{x_k, x_{k+1}, \ldots\} \subseteq U$ . Then,  $\{f(x_k), f(x_{k+1}), \ldots\} \subseteq V$ .

 $(ii) \Rightarrow (i)$ : Let  $d_X$  and  $d_Y$  be the metrics of X and Y respectively, and suppose that f is not continuous at x. There exists  $\varepsilon \in \mathbb{R}^*_+$  such that, for any  $\eta \in \mathbb{R}^*_+$ , there is  $y \in X$  with  $d_X(x, y) < \eta$  yet  $d_Y(f(x), f(y)) > \varepsilon$ . If we successively take  $\eta = 1, \frac{1}{2}, \frac{1}{3}, \ldots$ , we obtain points  $y_1, y_2, y_3, \ldots$  of X such that  $d_X(x, y_n) < \frac{1}{n}$  and  $d_Y(f(x), f(y_n)) > \varepsilon$  for  $n \in \mathbb{N}$ . Then  $(y_n)_{n \in \mathbb{N}}$  tends to x, but  $(f(y_n))_{n \in \mathbb{N}}$  does not tend to f(x).  $\Box$ 

#### 6.4 Complete Metric Spaces

**Definition 6.16.** Let *X* be a metric space with metric *d*. A sequence  $(x_n)_{n \in \mathbb{N}}$  of points in *X* is called a **Cauchy sequence** if, for every  $\varepsilon \in \mathbb{R}^*_+$ , there exists  $p \in \mathbb{N}$  such that  $m, n \ge p$  implies  $d(x_m, x_n) < \varepsilon$ .

**Proposition 6.17.** Let X be a metric space with metric d. If a sequence  $(x_n)_{n \in \mathbb{N}}$  of points in X has a limit in X, then it is a Cauchy sequence.

*Proof.* Suppose that  $(x_n)_{n \in \mathbb{N}}$  tends to x. For every  $\varepsilon \in \mathbb{R}^*_+$ , there exists a positive integer p such that  $n \ge p$  implies  $d(x_n, x) < \frac{\varepsilon}{2}$ . Then, if m, n are positive integers bigger than p, we have  $d(x_m, x) < \frac{\varepsilon}{2}$  and  $d(x_n, x) < \frac{\varepsilon}{2}$ , which implies  $d(x_m, x_n) \le d(x_m, x) + d(x_n, x) < \varepsilon$ .

**Definition 6.18.** A metric space *X* is said to be **complete** if every Cauchy sequence of points in *X* has a limit in *X*.

**Proposition 6.19.** Let X be a metric space,  $(x_n)_{n \in \mathbb{N}}$  a Cauchy sequence in X, and  $(x_{n_k})_{k \in \mathbb{N}}$  a subsequence of  $(x_n)_{n \in \mathbb{N}}$ . If the sequence  $(x_{n_k})_{k \in \mathbb{N}}$  has a limit l, then  $(x_n)_{n \in \mathbb{N}}$  also tends to l.

*Proof.* For every  $\varepsilon \in \mathbb{R}^*_+$ , there exists a positive integer p such that, if m, n are positive integers bigger than p, then  $d(x_m, x_n) < \frac{\varepsilon}{2}$ . Fix a positive integer n bigger than p. Since  $(x_{n_k})_{k \in \mathbb{N}}$  tends to l, then  $(d(x_{n_k}, x_n))_{k \in \mathbb{N}}$  tends to  $d(l, x_n)$ , so  $d(l, x_n) \leq \frac{\varepsilon}{2} < \varepsilon$ . As this is true for all positive integers  $n \geq p$ , then  $(x_n)_{n \in \mathbb{N}}$  also tends to l.

**Proposition 6.20.** Let X be a complete metric space, and Y a closed subspace of X. Then Y is complete.

*Proof.* Let  $(x_n)_{n \in \mathbb{N}}$  be a Cauchy sequence in Y. It is also a Cauchy sequence in X, hence has a limit l in X. We deduce from Proposition 6.12 that  $l \in \overline{Y}$ . But  $\overline{Y} = Y$ , thus  $(x_n)_{n \in \mathbb{N}}$  has a limit in Y.  $\Box$ 

**Proposition 6.21.** Let X be a metric space, and Y a complete metric subspace of X. Then Y is closed in X.

*Proof.* Take  $l \in \overline{Y}$ . We know from Proposition 6.12 that there exists a sequence  $(x_n)_{n \in \mathbb{N}}$  in Y that tends to l. So, we deduce Proposition 6.17 that  $(x_n)_{n \in \mathbb{N}}$  is a Cauchy sequence. It thus has a limit in Y since Y is complete. As l is its limit, we must have  $l \in Y$ , therefore  $\overline{Y} = Y$ .

## Part II

# **Algebraic Topology**

### **Fundamental Groups**

#### 7.1 Homotopy of Paths

**Definition 7.1.** Let *X* be a topological space, and *f*, *g* two paths in *X*. These paths are said to be **path homotopic** if they have the same origin *a*, the same extremity *b*, and if there is a continuous function  $F : [0,1] \times [0,1] \rightarrow X$  such that, if  $s, t \in [0,1]$ ,

$$F(s,0) = f(s)$$
 and  $F(s,1) = g(s)$ ,  
 $F(0,t) = a$  and  $F(1,t) = b$ .

In that case, one writes  $f \simeq_p g$ . The function F is called a **path homotopy** between f and g.

*Example.* Let f, g be paths in  $\mathbb{R}^n$ . The function  $F: [0,1] \times [0,1] \to \mathbb{R}^n$  defined by

$$F(x,t) = (1-t)f(x) + tg(x)$$

is a path homotopy between f and g.

**Proposition 7.2.** The relation  $\simeq_p$  on paths in a topological space X with fixed origins and extremities is an equivalence relation.

*Proof.* Given a path f, the function F(x, t) = f(x) is the required path homotopy to get  $f \simeq_p f$ . If  $f \simeq_p g$  is established by a path homotopy F(x, t), then G(x, t) = F(x, 1-t) is a path homotopy between g and f.

Suppose that  $f \simeq_p g$  by means of a path homotopy F, and  $g \simeq_p h$  by means of a path homotopy G, then  $f \simeq_p h$  by means of the path homotopy  $H : [0,1] \times [0,1] \to X$  defined by the equation

$$H(x,t) = \begin{cases} F(x,2t) & \text{if } t \in [0,\frac{1}{2}], \\ G(x,2t-1) & \text{if } t \in [\frac{1}{2},1]. \end{cases}$$

If f is a path, denote its path-homotopy equivalence class by [f].

**Definition 7.3.** Let X be a topological space, f a path in X from a to b, and g a path in X from b to c. Define the product f \* g of f and g to be the path h in X given by the equation

$$h(s) = \begin{cases} f(2s) & \text{for } s \in \left[0, \frac{1}{2}\right], \\ g(2s-1) & \text{for } s \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

$$[f] * [g] := [f * g]$$

**Lemma 7.4.** Let X, Y be a topological space,  $k : X \to Y$  a continuous function, and F is a path homotopy between two paths f, f' in X.

- (*i*) Then  $k \circ F$  is a path homotopy in Y between  $k \circ f$  and  $k \circ f'$ .
- (ii) Moreover, if g is a path in X with f(1) = g(0), then  $k \circ (f * g) = (k \circ f) * (k \circ g)$ .

*Proof.* (*i*) : The function  $k \circ F : [0, 1] \times [0, 1] \rightarrow Y$  is continuous such that, if  $s, t \in [0, 1]$ ,

$$k \circ F(s, 0) = k \circ f(s)$$
 and  $k \circ F(s, 1) = k \circ f'(s)$ ,  
 $k \circ F(0, t) = k \circ f(0) = k \circ f'(0)$  and  $k \circ F(1, t) = k \circ f(1) = k \circ f'(1)$ 

(*ii*) : We have

$$k \circ (f * g)(t) = k \circ \begin{cases} f(2t) & \text{for } t \in [0, \frac{1}{2}] \\ g(2t - 1) & \text{for } t \in [\frac{1}{2}, 1] \end{cases} = \begin{cases} k \circ f(2t) & \text{for } t \in [0, \frac{1}{2}] \\ k \circ g(2t - 1) & \text{for } t \in [\frac{1}{2}, 1] \end{cases} = (k \circ f) * (k \circ g)(t).$$

For  $x \in X$ , let  $e_x$  denote the constant path carrying all of [0,1] to the point x. Given a path f in X from a to b, denote the reverse of f by  $\overline{f}$ . It is the path from b to a defined for  $s \in [0,1]$  by  $\overline{f}(s) := f(1-s)$ .

**Proposition 7.5.** *The operation* \* *on path-homotopy classes in a topological space X has the following properties:* 

- (i) If [f] \* ([g] \* [h]) is defined, so is ([f] \* [g]) \* [h], and they are equal.
- (*ii*) If f is a path in X from a to b, then

$$[f] * [e_b] = [f]$$
 and  $[e_a] * [f] = [f].$ 

(*iii*) If f is a path in X from a to b, then

$$[f] * [\bar{f}] = [e_a]$$
 and  $[\bar{f}] * [f] = [e_b].$ 

*Proof.* (*ii*) : If  $e_0$  is the constant path at 0, and  $i : [0, 1] \to [0, 1]$  the identity map, then  $e_0 * i$  is a path from 0 to 1. Since i and  $e_0 * i$  are paths in  $\mathbb{R}$ , there is a path homotopy F between them. Then  $f \circ F$  is a path homotopy in X between the paths  $f \circ i = f$  and  $f \circ (e_0 * i) = (f \circ e_0) * (f \circ i) = e_a * f$ . Similarly, using the fact that  $i * e_1$  and i are path homotopic in [0, 1], one shows that  $[f] * [e_b] = [f]$ .

(*iii*) : The path  $i * \overline{i}$ , that begins and ends at 0, is path homotopic to the constant path  $e_0$  as paths in  $\mathbb{R}$  once again. Denoting F a path homotopy between them, we get from Lemma 7.4 that  $f \circ F$  is a path homotopy between  $f \circ e_0 = e_a$  and  $(f \circ i) * (f \circ \overline{i}) = f * \overline{f}$ . With a similar argument, using the fact that  $\overline{i} * i$  and  $e_1$  are path homotopic in [0, 1], one shows that  $[\overline{f}] * [f] = [e_b]$ . (*i*) : We have

$$f * (g * h)(t) = \begin{cases} f(2t) & \text{for } t \in [0, \frac{1}{2}], \\ g * h(2t-1) & \text{for } t \in [\frac{1}{2}, 1], \end{cases} = \begin{cases} f(2t) & \text{for } t \in [0, \frac{1}{2}], \\ g(2(2t-1)) & \text{for } t \in [\frac{1}{2}, \frac{3}{4}], \\ h(2(2t-1)-1) & \text{for } t \in [\frac{3}{4}, 1], \end{cases}$$

and 
$$(f * g) * h(t) = \begin{cases} f * g(2t) & \text{for } t \in [0, \frac{1}{2}], \\ h(2t-1) & \text{for } t \in [\frac{1}{2}, 1], \end{cases} = \begin{cases} f(4t) & \text{for } t \in [0, \frac{1}{4}], \\ g(4t-1) & \text{for } t \in [\frac{1}{4}, \frac{1}{2}], \\ h(2t-1) & \text{for } t \in [\frac{1}{2}, 1]. \end{cases}$$
  
Then  $(f * (g * h)) \circ \alpha = (f * g) * h$  with  $\alpha : [0, 1] \to [0, 1]$  defined by  $\alpha(s) = \begin{cases} 2s & \text{for } s \in [0, \frac{1}{4}], \\ s + \frac{1}{4} & \text{for } s \in [\frac{1}{4}, \frac{1}{2}], \\ \frac{s}{2} + \frac{1}{2} & \text{for } s \in [\frac{1}{2}, 1] \end{cases}$   
As  $\alpha$  and  $i$  are paths in  $\mathbb{R}$ , we get by Lemma 7.4 that  $(f * (g * h)) \circ \alpha \simeq_p ((f * g) * h) \circ i = (f * g) * h. \square$ 

#### 7.2 Fundamental Groups

**Definition 7.6.** Let *X* be a topological space, and  $a \in X$ . A path in *X* that starts and ends at *a* is called a **loop** at the **basepoint** *a*. The set of all homotopy classes [f] of loops  $f : [0,1] \to X$  at the basepoint *a* is denoted  $\pi_1(X, a)$ .

**Proposition 7.7.** Let X be a topological space, and  $a \in X$ . The set  $\pi_1(X, a)$  is a group with respect to the product \*.

*Proof.* By restricting to loops f, g with a fixed basepoint, we guarantee that the product f \* g or more exactly the product [f] \* [g] = [f \* g] is defined. It remains to verify the three axioms for a group:

- From Proposition 7.5 (i), for all  $[f], [g], [h] \in \pi_1(X, a), [f] * ([g] * [h]) = ([f] * [g]) * [h].$
- From Proposition 7.5 (ii), for every  $[f] \in \pi_1(X, a)$ ,  $[f] * [e_a] = [f]$  and  $[e_a] * [f] = [f]$ .
- From Proposition 7.5 (iii), for every  $[f] \in \pi_1(X, a)$ ,  $[f] * [\overline{f}] = [e_a]$  and  $[\overline{f}] * [f] = [e_a]$ .

**Definition 7.8.** Let *X* be a topological space, and  $a \in X$ . The group  $\pi_1(X, a)$  is called the **fundamental** group of *X* at the basepoint *a*.

*Example.* For a convex set X in  $\mathbb{R}^n$  with basepoint  $a \in X$ ,  $\pi_1(X, a)$  is the trivial one-element group. Indeed the function  $F : [0,1] \times [0,1] \to \mathbb{R}^n$  defined by

$$F(x,t) = (1-t)f(x) + tg(x)$$

is a path homotopy between any loops f, g based at a.

**Definition 7.9.** A topological space *X* is said to be **simply connected** if it is a path connected space and if  $\pi_1(X, a)$  is the trivial one-element group for every  $a \in X$ .

**Proposition 7.10.** *Let X be a simply connected topological space. Then, any paths in X having the same origin and extremity are path homotopic.* 

*Proof.* Let f, g be paths in X from a to b. Then  $f * \overline{g}$  is defined and is a loop on X based at a. Since X is simply connected, f \* g is path homotopic to  $e_a$ . Using Proposition 7.5, we get

$$[f] = [f] * [e_b] = [f] * [\bar{g} * g] = [f * \bar{g}] * [g] = [e_a] * [g] = [g].$$

**Proposition 7.11.** Let X be a topological space,  $a, b \in X$ , and f a path from a to b. Define the map  $\hat{f} : \pi_1(X, a) \to \pi_1(X, b)$  by

$$\widehat{f}([h]) := [\overline{f}] * [h] * [f]$$

Then the map  $\hat{f}$  is a group isomorphism.

*Proof.* Let  $[g], [h] \in \pi_1(X, a)$ . We have

$$\begin{split} \hat{f}([g]) * \hat{f}([h]) &= \left([\bar{f}] * [g] * [f]\right) * \left([\bar{f}] * [h] * [f]\right) \\ &= [\bar{f}] * [g] * [h] * [f] \\ &= \hat{f}([g] * [h]). \end{split}$$

Then,  $\hat{f}$  is a homomorphism. To prove that  $\hat{f}$  is an isomorphism, we show that  $\hat{f} : \pi_1(X, b) \to \pi_1(X, a)$  defined for every  $[h] \in \pi_1(X, b)$  by

$$\widehat{\overline{f}}([h]) := [f] * [h] * [\overline{f}]$$

is an inverse for  $\hat{f}$ . We have  $\hat{f} \circ \hat{f}([h]) = [f] * ([\bar{f}] * [h] * [f]) * [\bar{f}] = [h]$ . A similar computation shows that  $\hat{f} \circ \hat{\bar{f}}([h]) = [h]$ .

Suppose that  $h: X \to Y$  is a continuous function that carries the point *a* of *X* to the point *b* of *Y*. One denotes this fact by writing  $h: (X, a) \to (Y, b)$ .

**Definition 7.12.** Let *X*, *Y* be topological spaces, and  $h : (X, a) \to (Y, b)$  a continuous function. Define  $h_* : \pi_1(X, a) \to \pi_1(Y, b)$  by

$$h_*([f]) := [h \circ f].$$

The map  $h_*$  is called the **homomorphism induced** by *h* relative to the basepoint *a*.

**Proposition 7.13.** Let *X*, *Y*, *Z* be topological spaces.

- (i) If  $h: (X, a) \to (Y, b)$  and  $k: (Y, b) \to (Z, c)$  are continuous maps, then  $(k \circ h)_* = k_* \circ h_*$ .
- (ii) If  $i: (X, a) \to (X, a)$  is the identity map, then  $i_*$  is the identity homomorphism.

*Proof.* (i): We have both equalities

$$(k \circ h)_* ([f]) = [(k \circ h) \circ f],$$
  

$$(k_* \circ h_*) ([f]) = k_* (h_* ([f])) = k_* ([h \circ f]) = [k \circ (h \circ f)].$$

(*ii*): We have  $i_*([f]) = [i \circ f] = [f]$ .

**Corollary 7.14.** Let X, Y be topological spaces. If  $h: (X, a) \to (Y, b)$  is a homeomorphism from X to Y, then  $h_*$  is an isomorphism from  $\pi_1(X, a)$  to  $\pi_1(Y, b)$ .

*Proof.* Let  $k : (Y, b) \to (X, a)$  be the inverse of h. Then  $k_* \circ h_* = (k \circ h)_* = i_*$ , where i is the identity map of (X, a). Besides,  $h_* \circ k_* = (h \circ k)_* = j_*$ , where j is the identity map of (Y, b). As  $i_*$  and  $j_*$  are the identity homomorphisms of  $\pi_1(X, a)$  and  $\pi_1(Y, b)$  respectively,  $k_*$  is then the inverse of  $h_*$ .

**Proposition 7.15.** Let X,Y be topological spaces, and  $(a, b) \in X \times Y$ . Then  $\pi_1(X \times Y, (a, b))$  is isomorphic to  $\pi_1(X, a) \times \pi_1(Y, b)$ .

*Proof.* We know from Proposition 3.14 that the existence of a loop  $f:[0,1] \to X \times Y$  at the basepoint (a, b) is equivalent to the existence of a loop  $g:[0,1] \to X$  at the basepoint a, and a loop  $h:[0,1] \to Y$  at the basepoint b such that f = (g, h). We also know from Proposition 3.14 that the existence of a path homotopy  $F:[0,1] \times [0,1] \to X \times Y$  between two loops  $f_1, f_2$  at the basepoint (a, b) is equivalent to the existence of a path homotopy  $G:[0,1] \times [0,1] \to X$  between two loops  $g_1, g_2$  at the basepoint a, and a path homotopy  $H:[0,1] \times [0,1] \to Y$  between two loops  $h_1, h_2$  at the basepoint b such that  $f_1 = (g_1, h_1), f_2 = (g_2, h_2)$ , and F = (G, H). Thus, the function  $\alpha : \pi_1(X \times Y, (a, b)) \to \pi_1(X, a) \times \pi_1(Y, b)$  defined, for a loop f = (g, h) at the basepoint (a, b), by  $\alpha([f]) = ([g], [h])$  is bijective. It can also be extended to a group homomorphism since, for two loops  $f_1 = (g_1, h_1), f_2 = (g_2, h_2)$  at the basepoint (a, b), we have

$$\alpha([f_1]*[f_2]) = \alpha([f_1*f_2]) = ([g_1*g_2], [h_1*h_2]) = ([g_1]*[g_2], [h_1]*[h_2]) = \alpha([f_1])*\alpha([f_2]).$$

Hence,  $\alpha$  is an isomorphism.

#### **7.3** The Fundamental Group of $\mathbb{S}^n$

**Lemma 7.16.** For  $p_1, p_2, p_3 \in \mathbb{R}^n$ , the triangle of vertices  $p_1, p_2, p_3$  is

$$T = \{t_1p_1 + t_2p_2 + t_3p_3 \mid t_1, t_2, t_3 \in \mathbb{R}_+, t_1 + t_2 + t_3 = 1\}.$$

Consider a topological space X, and a continuous function  $f : T \to X$ . For  $i, j \in \{1, 2, 3\}$  with i < j, the standard parametrisation of f restricted to the edge from  $p_i$  to  $p_j$  is the path

$$f_{ij}: [0,1] \to X, \quad t \mapsto f((1-t)p_i + tp_j)$$

from  $f(p_i)$  to  $f(p_j)$ . We have,  $f_{13} \simeq_p f_{12} * f_{23}$ .

Proof. Consider the function

$$q: [0,1] \times [0,1] \to T, \quad (t,s) \mapsto \begin{cases} (1-t-ts)p_1 + 2tsp_2 + (t-ts)p_3 & \text{for } t \le \frac{1}{2}, \\ (1-t-s-ts)p_1 + 2(1-t)sp_2 + (t-s+ts)p_3 & \text{for } t \ge \frac{1}{2}. \end{cases}$$

We have

$$\begin{split} f\bigl(q(t,0)\bigr) &= \begin{cases} f\bigl((1-t)p_1+tp_3\bigr) = f_{13}(t) & \text{for } t \leq \frac{1}{2} \\ f\bigl((1-t)p_1+tp_3\bigr) = f_{13}(t) & \text{for } t \geq \frac{1}{2} \end{cases} = f_{13}(t), \\ f\bigl(q(t,1)\bigr) &= \begin{cases} f\bigl((1-2t)p_1+2tp_2\bigr) = f_{12}(2t) & \text{for } t \leq \frac{1}{2} \\ f\bigl((1-(2t-1))p_2+(2t-1)p_3\bigr) = f_{23}(2t-1) & \text{for } t \geq \frac{1}{2} \end{cases} = f_{12} * f_{23}(t), \\ f\bigl(q(0,s)\bigr) = f(p_1) & \text{and} \quad f\bigl(q(1,s)\bigr) = f(p_3). \end{split}$$

Hence, the function

$$F: [0, 1] \times [0, 1] \to X, \quad (t, s) \mapsto f(q(t, s))$$

is a path homotopy from  $f_{13}$  to  $f_{12} * f_{23}$ .

**Lemma 7.17.** Let X be a topological space,  $f : [0, 1] \to X$  a path in X, and  $a_0, \ldots, a_n \in \mathbb{R}$  such that  $0 = a_0 < a_1 < \cdots < a_n = 1$ . For  $i \in \{1, \ldots, n\}$ , let  $l_i : [0, 1] \to [a_{i-i}, a_i]$  be the affine function such that  $l_i(0) = a_{i-1}$  and  $l_i(1) = a_i$ , and

$$f_i: [0, 1] \to X, \quad t \mapsto f \circ l_i(t)$$

the standard parametrisation of f restricted to  $[a_{i-i}, a_i]$ . Then,  $[f] = [f_1] * \cdots * [f_n]$ .

*Proof.* Using Lemma 7.16 with f equal to the identity map  $i_{[a_0,a_2]}$  on  $[a_0,a_2]$ , we prove that  $l_1 * l_2 \simeq_p l_{12}$  which is the affine function such that  $l_{12}(0) = a_0$  and  $l_{12}(1) = a_2$ . More generally, for  $k \in \{3, \ldots, n\}$ , we can use Lemma 7.16 with f equal to the identity map  $i_{[a_0,a_k]}$  on  $[a_0, a_k]$  to prove that  $l_{1k-1} * l_k \simeq_p l_{1k}$ , where  $l_{1k-1}$  and  $l_{1k}$  are the affine functions such that  $l_{1k-1}(0) = l_{1k} = a_0$ ,  $l_{1k-1}(1) = a_{k-1}$ , and  $l_{1k} = a_k$ . Hence, we successively obtain

$$l_1 * l_2 * l_3 * \dots * l_n = l_{12} * l_3 * \dots * l_n$$
  
=  $l_{13} * \dots * l_n$   
=  $l_{1n}$ 

which is the identity map on [0, 1]. We deduce from Lemma 7.4 that

$$(f \circ l_1) * (f \circ l_2) * (f \circ l_3) * \dots * (f \circ l_n) = f \circ l_{1n} = f$$
  
$$f_1 * f_2 * f_3 * \dots * f_n = f$$
  
$$[f_1] * [f_2] * [f_3] * \dots * [f_n] = [f].$$

**Proposition 7.18.** Let X be topological space, and A, B two open subsets of X such that  $X = A \cup B$  and  $A \cap B \neq \emptyset$ . Suppose that A, B are path connected, and take  $x \in A \cap B$ . Consider the inclusion maps  $i: A \hookrightarrow X$  and  $j: B \hookrightarrow X$ . Then,  $\pi_1(X, x)$  is generated by the images of the induced homomorphisms

$$i_*: \pi_1(A, x) \to \pi_1(X, x)$$
 and  $j_*: \pi_1(B, x) \to \pi_1(X, x)$ .

*Proof.* Let  $f:[0,1] \to X$  be a loop based at x. We know from Theorem 8.10 that there exists a positive integer n such that, for every  $i \in \{1, ..., n\}$ , the restriction of f to the interval  $\left[\frac{i-1}{n}, \frac{i}{n}\right]$  is contained in A or in B. Let  $f_i$  be the standard parametrisation of f restricted to  $\left[\frac{i-1}{n}, \frac{i}{n}\right]$ , that is

$$f_i: [0, 1] \to A \text{ (or } B), \quad t \mapsto f\left(\frac{i-1+t}{n}\right).$$

Since *A*, *B* are path connected, we can find a path  $h_i$  from  $f\left(\frac{i}{n}\right)$  to x so that

if f(<sup>i</sup>/<sub>n</sub>) ∈ A, then h<sub>i</sub>: [0, 1] → A is a path in A,
if f(<sup>i</sup>/<sub>n</sub>) ∈ B, then h<sub>i</sub>: [0, 1] → A is a path in B.

Using Lemma 7.17, we may write

$$f = f_1 * f_2 * \dots * f_i * \dots * f_{n-1} * f_n$$
  
=  $f_1 * h_1 * \bar{h}_1 * f_2 * h_2 * \dots * \bar{h}_{i-1} * f_i * h_i * \dots * \bar{h}_{n-2} * f_{n-1} * h_{n-1} * \bar{h}_{n-1} * f_n$   
=  $k_1 * k_2 * \dots * k_{n-1} * k_n$ ,

where

$$k_1 = f_1 * h_1, \ k_2 = \bar{h}_1 * f_2 * h_2, \ \dots, \ k_i = \bar{h}_{i-1} * f_i * h_i, \ \dots, \ k_{n-1} = \bar{h}_{n-2} * f_{n-1} * h_{n-1}, \ k_n = \bar{h}_{n-1} * f_n.$$

To finish, for every  $i \in \{1, ..., n\}$ ,  $k_i$  is a loop based at x in A or in B.

**Corollary 7.19.** Let X be a topological space, and A, B open sets of X such that  $X = A \cup B$  and  $A \cap B \neq \emptyset$ . If A and B are simply connected, then X is simply connected.

*Proof.* As *A* and *B* are path connected, we deduce from Proposition 5.18 that *X* is path connected. Choose a base point  $x \in A \cap B$ . Since  $\pi_1(A, x)$  and  $\pi_1(B, x)$  are the trivial one-element group,  $\pi_1(X, x)$  is then generated by the neutral element by Proposition 7.18, so it is trivial.

**Corollary 7.20.** If *n* is a positive integer such that  $n \ge 2$ , then  $\mathbb{S}^n$  is simply connected.

*Proof.* Write  $\mathbb{S}^n = A \cup B$ , where  $A = \mathbb{S}^n \setminus \{(0, \dots, 0, 1)\}$  and  $B = \mathbb{S}^n \setminus \{(0, \dots, 0, -1)\}$ . We know from the stereographic projection of *A* onto  $\mathbb{R}^n$  that *A* is homeomorphic to  $\mathbb{R}^n$ . Moreover, the function  $f : A \to B$ ,  $a \mapsto -a$  is a homeomorphism between *A* and *B*. Hence, *A* and *B* are simply connected, and also  $\mathbb{S}^n$  by Corollary 7.19.

### Chapter 8

## **Covering Spaces**

#### 8.1 Covering Maps

**Definition 8.1.** Let *X*, *Y* be topological spaces, and  $p : X \to Y$  a continuous surjective function. An open set *A* of *Y* is said to be **evenly covered** by *p* if the inverse image  $p^{-1}(A)$  is equal to  $\bigsqcup_{i \in I} A_i$  such that  $A_i$  is an open subset of *X*, and the restriction of *p* to  $A_i$  is a homeomorphism of  $A_i$  to *A*. The family  $\{A_i\}_{i \in I}$  is called a partition of  $p^{-1}(A)$  into **slices**.

**Definition 8.2.** Let *X*, *Y* be open topological spaces, and  $p : X \to Y$  a continuous surjective function. If every point *a* of *Y* has an open neighborhood *A* that is evenly covered by *p*, then *p* is called a **covering map**, and *X* is said to be a **covering space** of *Y*.

*Example.* Consider  $\mathbb{R}$  with the usual topology, and  $\mathbb{S}^1 = \{(\cos t, \sin t) \mid t \in [0, 2\pi]\}$  equipped with the topology induced by the usual topology of  $\mathbb{R}^2$ . For any point  $a = (\cos u, \sin u) \in \mathbb{S}^1$ , the set  $U_a = \{(\cos t, \sin t) \mid t \in (u - 1, u + 1)\}$  is then an open neighborhood of a. The function  $p : \mathbb{R} \to \mathbb{S}^1$  given by  $p(x) = (\cos 2\pi x, \sin 2\pi x)$  is continuous and surjective. Moreover,

• we have 
$$p^{-1}(U_a) = \bigsqcup_{k \in \mathbb{Z}} \left( \frac{u-1}{2\pi} + k, \frac{u+1}{2\pi} + k \right)$$
, where  $\left( \frac{u-1}{2\pi} + k, \frac{u+1}{2\pi} + k \right)$  is open in  $\mathbb{R}$ ,

• the restriction  $p_k$  of p to  $\left(\frac{u-1}{2\pi}+k, \frac{u+1}{2\pi}+k\right)$  is clearly a homeomorphism onto  $U_a$ .

Then, *p* is a covering map.

**Definition 8.3.** Let *X*, *Y* be topological spaces, and  $f : X \to Y$  a function. A function  $s : Y \to X$  is called a **section** of *f* is p(s(y)) = y for every  $y \in Y$ .

**Proposition 8.4.** Let X, Y be topological spaces, and  $p: X \to Y$  a covering map. For every evenly covered set  $V \subseteq Y$ , and every point  $x \in p^{-1}(V)$ , there exists a continuous section  $s: V \to p^{-1}(V)$  of the restriction  $p: p^{-1}(V) \to V$  such that s(p(x)) = x. If V is connected, then s is unique.

*Proof.* We can write  $p^{-1}(V) = U \sqcup W$  such that U and W are open,  $x \in U$ , and the restriction  $p_{|U} : U \to V$  is a homeomorphism. The inverse  $s = p_{|U}^{-1}$  is clearly a continuous section of  $p_{|U}$ , and consequently of p by extending its codomain to  $p^{-1}(V)$ .

If *V* is connected, then *U* is connected and is a connected component of  $p^{-1}(V)$ . Suppose  $r: V \to X$  is another continuous section of *p* such that r(p(x)) = x. Since  $r(V) \subseteq p^{-1}(V)$  and *V* is connected, then

r(V) is contained in the connected component of  $p^{-1}(V)$  that contains *x* which is *U*. As p(r(y)) = y for every  $y \in V$ ,  $r: V \to U$  is then the inverse of  $p_{|U}: U \to V$ .

**Proposition 8.5.** Let X, Y be topological spaces, and  $p: X \to Y$  a covering map. If  $Y_0$  is a subspace of Y, and if  $X_0 = p^{-1}(Y_0)$ , then the map  $p_0: X_0 \to Y_0$  obtained by restricting p is a covering map.

*Proof.* Given  $y \in Y_0$ , let V be an open set in Y containing y that is evenly covered by p. If  $\{U_i\}_{i \in I}$  is a partition of  $p^{-1}(V)$  into slices, then  $V \cap Y_0$  is a neighborhood of y in  $Y_0$ , and  $\{U_i \cap X_0\}_{i \in I}$  is formed by disjoint open sets in  $X_0$  whose union is  $p^{-1}(V \cap Y_0)$ . Moreover, the restriction of p to  $U_i \cap X_0$  is a homeomorphism onto  $V \cap Y_0$ .

**Proposition 8.6.** Let X, X', Y, Y' be topological spaces, and  $p : X \to Y$ ,  $p' : X' \to Y'$  covering maps. Then  $p \times p' : X \times X' \to Y \times Y'$  is a covering map.

*Proof.* Let  $(y, y') \in Y \times Y'$ , and V, V' neighborhoods of y, y' respectively, that are evenly covered by p, p' respectively. Let  $\{U_i\}_{i \in I}, \{U'_j\}_{j \in J}$  be partitions into slices of  $p^{-1}(V), p'^{-1}(V')$  respectively. Then  $(p \times p')^{-1}(V \times V') = \bigsqcup_{\substack{i \in I \\ j \in J}} U_i \times U'_j$ . Moreover, the restriction of  $p \times p'$  to  $U_i \times U'_j$  is a homeomorphism

onto  $V \times V'$ .

#### 8.2 Function Liftings

**Definition 8.7.** Let E, X, Y be topological spaces,  $p: X \to Y$  a covering map, and  $f: E \to Y$  a continuous function. A **lifting** of f is a function  $\tilde{f}: E \to X$  such that  $p \circ \tilde{f} = f$ .



*Example.* Consider the covering map  $p : \mathbb{R} \to \mathbb{S}^1$  defined by  $p(x) = (\cos 2\pi x, \sin 2\pi x)$ . The path  $f : [0, 1] \to \mathbb{S}^1$  from (1, 0) to (-1, 0) given by  $f(t) = (\cos \pi t, \sin \pi t)$  lifts to the path  $\tilde{f} : [0, 1] \to \mathbb{R}$  from 0 to  $\frac{1}{2}$  given by  $\tilde{f}(t) = \frac{t}{2}$ . The path  $g : [0, 1] \to \mathbb{S}^1$  given by  $g(t) = (\cos \pi t, -\sin \pi t)$  from (1, 0) to (-1, 0) lifts to the path  $\tilde{g} : [0, 1] \to \mathbb{R}$  from 0 to  $-\frac{1}{2}$  given by  $\tilde{g}(t) = -\frac{t}{2}$ .

**Lemma 8.8.** Let *X*, *Y* be topological spaces, and  $p: X \rightarrow Y$  a covering map. Consider the subspace

$$X \times_p X = \{(a, b) \in X \times X \mid p(a) = p(b)\}$$

of the product space  $X \times X$ . Then,  $\Delta = \{(a, a) \mid a \in X\}$  is an open and a closed subset of  $X \times_p X$ .

*Proof.* Take  $(x, x) \in \Delta$  and choose an open set  $U \subseteq X$  such that  $x \in U$  and the restriction  $p: U \to Y$  is injective. Then,  $(U \times U) \cap (X \times_p X) = U \times_p U$  is an open neighborhood of (x, x) in  $X \times_p X$ . As  $U \times_p U = \{(a, b) \in U \times U \mid p(a) = p(b)\} = \{(a, a) \mid a \in U\} \subseteq \Delta$ , then  $\Delta$  is a neighborhood of points, so is open in  $X \times_p p$  by Proposition 1.9.

Take  $(x_1, x_2) \in X \times_p X \setminus \Delta$ , and choose an evenly covered open set  $V \subseteq Y$  containing  $p(x_1) = p(x_2)$ . Since  $x_1 \neq x_2$ , they cannot be in the same slice, so there exist disjoint open sets  $U_1, U_2 \in p^{-1}(V)$  such that  $x_1 \in U_1$  and  $x_2 \in U_2$ . Therefore, the set  $(U_1 \times U_2) \cap (X \times_p X)$  contains  $(x_1, x_2)$ , is open in  $X \times_p X$ , and is included in  $X \times_p X \setminus \Delta$ . We deduce from Proposition 1.9 that  $X \times_p X \setminus \Delta$  is open, so  $\Delta$  is closed in  $X \times_p X$ .

**Lemma 8.9.** Let X, Y be topological spaces,  $p: X \to Y$  a covering map, E a connected space, and  $f: E \to Y$  a continuous function. If  $g: E \to X$  and  $h: E \to X$  are two liftings of f, we have either  $g = h \text{ or } g(e) \neq h(e) \text{ for every } e \in E.$ 

*Proof.* Recall that  $X \times_Y X = \{(a, b) \in X \times X \mid p(a) = p(b)\}$  and  $\Delta = \{(a, a) \mid a \in X\}$ . Consider the continuous function  $\Phi: E \to X \times_Y X$  defined by  $\Phi(e) = (g(e), h(e))$ . Let  $A = \{e \in E \mid g(e) = e\}$ h(e) =  $\Phi^{-1}(\Delta)$ . We know from Lemma 8.8 that  $\Delta$  is open and closed in  $X \times_p X$ . Then, A is open and closed in *E*. Since *E* is connected, either A = E or  $A = \emptyset$ . 

**Theorem 8.10** (Lebesgue number). Let X be a compact metric space with metric d, Y a topological space,  $\mathcal{O}$  a family of open sets covering Y, and  $f: X \to Y$  a continuous function. There exists  $\rho \in \mathbb{R}^+_+$ such that, for any  $x \in X$ ,  $f(B(x, \rho))$  is contained in an open set of  $\mathcal{O}$ .

*Proof.* For any  $n \in \mathbb{N}$ , let  $X_n$  be the set of points  $x \in X$  having the property that there exists  $U \in \mathcal{O}$ such that  $B(x, 2^{-n}) \subseteq f^{-1}(U)$ . For any  $x \in X$ , there exists  $U \in \mathcal{O}$  such that  $x \in f^{-1}(U)$ . As  $f^{-1}(U)$  is open, there exists  $n \in \mathbb{N}$  such that  $B(x, 2^{-n}) \subseteq f^{-1}(U)$ , then  $\bigcup X_n = X$ .

It is clear that  $X_n \subseteq X_{n+1}$ . Moreover,  $X_n \subseteq X_{n+1}^\circ$ . Indeed, let  $x \in X_n$  and  $U \in \mathcal{O}$  such that  $B(x, 2^{-n}) \subseteq f^{-1}(U)$ . For every  $z \in X$  such that  $d(x, z) < 2^{-n-1}$ , we have  $B(z, 2^{-n-1}) \subseteq B(x, 2^{-n}) \subseteq f^{-1}(U)$ , then  $z \in X_{n+1}$ . Hence  $B(x, 2^{-n-1}) \subseteq X_{n+1}$ , meaning that  $X_{n+1}$  is a neighborhood of x.

The fact  $X_n \subseteq X_{n+1}^{\circ}$  implies  $\bigcup_{n \in \mathbb{N}} X_n \subseteq \bigcup_{n \in \mathbb{N}} X_n^{\circ}$ , and then  $\bigcup_{n \in \mathbb{N}} X_n^{\circ} = X$ . As X is compact,  $X = X_n^{\circ}$  for some  $n \in \mathbb{N}$ , and consequently  $X = X_n$ .

**Theorem 8.11.** Let X, Y be topological spaces,  $p: X \to Y$  a covering map, and  $(a, b) \in X \times Y$  such that p(a) = b. Any path  $f: [0, 1] \to Y$  beginning at b has a unique lifting to a path  $\tilde{f}: [0, 1] \to X$ beginning at a.

*Proof.* We know from Lemma 8.9 there exists at most one lifting  $\tilde{f}: [0, 1] \to X$  such that  $\tilde{f}(0) = a$ . Then, the existence remains. Let  $\mathcal{O}$  be a family of evenly covered open sets covering Y. We know from Theorem 8.10 that there exist  $n \in \mathbb{N}$  and  $V_1, \ldots, V_n \in \mathcal{O}$  such that  $f\left(\left\lceil \frac{i-1}{n}, \frac{i}{n} \right\rceil\right) \subseteq V_i$  for every  $i \in \{1, \ldots, n\}$ . We recursively define *n* continuous functions  $g_i : \left[\frac{i-1}{n}, \frac{i}{n}\right] \to X$  for every  $i \in \{1, \ldots, n\}$ such that

• 
$$\forall t \in \left[\frac{i-1}{n}, \frac{i}{n}\right], \ p(g_i(t)) = f(t),$$
  
•  $g_1(0) = a$ , and  $g_i\left(\frac{i}{n}\right) = g_{i+1}\left(\frac{i}{n}\right).$ 

Using Proposition 8.4, we deduce the existence of a section  $s_1 : V_1 \to p^{-1}(V_1)$  of the restriction  $p: p^{-1}(V_1) \to V_1$  such that  $s_1(p(a)) = a$ . Then, we may define  $g_1 : \left[0, \frac{1}{n}\right] \to X$  by  $g_1(t) = s_1(f(t))$ . Suppose that  $g_i$  has already been defined, and consider a section  $s_{i+1} : V_{i+1} \to p^{-1}(V_{i+1})$  of the restriction  $p: p^{-1}(V_{i+1}) \to V_{i+1}$  such that  $s_{i+1}\left(f\left(\frac{i}{n}\right)\right) = s_{i+1}\left(p\left(g_i\left(\frac{i}{n}\right)\right)\right) = g_i\left(\frac{i}{n}\right)$ . We may define  $g_{i+1}: \left[\frac{i}{n}, \frac{i+1}{n}\right] \to X$  by  $g_{i+1}(t) = s_{i+1}(f(t))$ . Hence  $g_1 * g_2 * \cdots * g_n$  is the required lifting  $\tilde{f}$ . 

**Proposition 8.12.** Let X, Y be topological spaces,  $p : X \to Y$  a covering map, and  $(a, b) \in X \times Y$  such that p(a) = b. Consider a continuous function  $F : [0, 1] \times [0, 1] \to Y$  such that F(0, 0) = b. There exists a unique lifting of F to a continuous function

$$\tilde{F}: [0,1] \times [0,1] \rightarrow X$$
 such that  $\tilde{F}(0,0) = a$ .

*Proof.* We know from Lemma 8.9 there exists at most one lifting  $\tilde{F} : [0, 1] \times [0, 1] \to X$  such that  $\tilde{F}(0, 0) = a$ . Then, the existence remains.

Let  $\mathscr{O}$  be a family of evenly covered open sets covering *Y*. We know from Theorem 8.10 that there exist  $m, n \in \mathbb{N}$  and  $V_{11}, \ldots, V_{mn} \in \mathscr{O}$  such that  $F\left(\left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left[\frac{j-1}{n}, \frac{j}{n}\right]\right) \subseteq V_{ij}$  for every  $(i, j) \in \{1, \ldots, m\} \times \{1, \ldots, n\}$ . We recursively define on each row and from the bottom to the top *mn* continuous functions  $\tilde{F}_{ij}: \left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left[\frac{j-1}{n}, \frac{j}{n}\right] \to X$  for every  $(i, j) \in \{1, \ldots, m\} \times \{1, \ldots, n\}$  such that

• 
$$\forall (s,t) \in \left[\frac{i-1}{n}, \frac{i}{n}\right] \times \left[\frac{j-1}{n}, \frac{j}{n}\right], \ p\left(\tilde{F}_{ij}(s,t)\right) = F(s,t),$$

• 
$$\tilde{F}_{11}(0,0) = a$$
 and  $\tilde{F}_{i1}\left(\frac{i}{m},0\right) = \tilde{F}_{i+11}\left(\frac{i}{m},0\right)$ ,  
•  $\tilde{F}_{1j+1}\left(0,\frac{j}{n}\right) = \tilde{F}_{1j}\left(0,\frac{j}{n}\right)$  and  $\tilde{F}_{i1+1}\left(\frac{i}{m},\frac{j}{n}\right) = \tilde{F}_{i+1j+1}\left(\frac{i}{m},\frac{j}{n}\right)$ .

Using Proposition 8.4, we deduce the existence of a section  $s_{11}: V_{11} \to p^{-1}(V_{11})$  of the restriction  $p: p^{-1}(V_{11}) \to V_{11}$  such that  $s_{11}(p(a)) = a$ . Then, we may define  $\tilde{F}_{11}: \left[0, \frac{1}{m}\right] \times \left[0, \frac{1}{n}\right] \to X$  by  $\tilde{F}_{11}(s,t) = s_{11}(F(s,t))$ . Suppose that  $\tilde{F}_{11}, \ldots, \tilde{F}_{ij}$  have already been defined, and consider a section  $s_{i+1,j}: V_{i+1,j} \to p^{-1}(V_{i+1,j})$  of the restriction  $p: p^{-1}(V_{i+1,j}) \to V_{i+1,j}$  such that

$$s_{i+1,j}\left(F\left(\frac{i}{m},\frac{j}{n}\right)\right) = s_{i+1,j}\left(p\left(\tilde{F}_{ij}\left(\frac{i}{m},\frac{j}{n}\right)\right)\right) = \tilde{F}_{ij}\left(\frac{i}{m},\frac{j}{n}\right)$$

We may define  $\tilde{F}_{i+1,j}: \left[\frac{i}{m}, \frac{i+1}{m}\right] \times \left[\frac{j}{n}, \frac{j+1}{n}\right] \to X$  by  $\tilde{F}_{i+1,j} = s_{i+1}(F(s,t))$ .

Remark that, due to the uniqueness of the lifting of the path  $F\left(\frac{i}{m}, \frac{j-1+t}{n}\right)$  with variable *t* beginning at  $\tilde{F}_{ij}\left(\frac{i}{m}, \frac{j-1}{n}\right) = \tilde{F}_{i+1j}\left(\frac{i}{m}, \frac{j-1}{n}\right)$ , we have  $\forall (s, t) \in \left\{\frac{i}{m}\right\} \times \left[\frac{j-1}{n}, \frac{j}{n}\right], \tilde{F}_{ij}(s, t) = \tilde{F}_{i+1j}(s, t).$ 

Using the same argument with the lifting beginning at  $\tilde{F}_{ij}\left(\frac{i}{m}, \frac{j}{n}\right) = \tilde{F}_{ij+1}\left(\frac{i}{m}, \frac{j}{n}\right)$ , we get

$$\forall (s,t) \in \left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left\{\frac{j}{n}\right\}, \ \tilde{F}_{ij}(s,t) = \tilde{F}_{ij+1}(s,t).$$

Hence,  $\tilde{F} = \tilde{F}_{ij}$  on  $\left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left[\frac{j-1}{n}, \frac{j}{n}\right] \to X$ , for every  $(i, j) \in \{1, \dots, m\} \times \{1, \dots, n\}$ , is the required lifting of F.

**Corollary 8.13.** Let *X*, *Y* be topological spaces,  $p : X \to Y$  a covering map, and  $(a, b) \in X \times Y$  such that p(a) = b. Consider two paths  $f : [0, 1] \to Y$  and  $g : [0, 1] \to Y$  beginning at *b* and ending *c*, and their respective liftings  $\tilde{f}$  and  $\tilde{g}$  beginning at *a*. The following conditions are equivalent:

- (*i*) *f* and *g* are path homotopic,
- (ii)  $\tilde{f}(1) = \tilde{g}(1)$  and  $\tilde{f}, \tilde{g}$  are path homotopic.

*Proof.*  $(i) \Rightarrow (ii)$ : Consider a path homotopy  $F : [0, 1] \times [0, 1] \rightarrow Y$  such that F(0, t) = f(t), F(1, t) = g(t), F(s, 0) = b, and F(s, 1) = c. Let  $\tilde{F} : [0, 1] \times [0, 1] \rightarrow X$  the lifting of F such that  $\tilde{F}(0, 0) = a$  described in Proposition 8.12. Path lifting uniqueness implies  $\tilde{F}(0, t) = \tilde{f}(t)$  and  $\tilde{F}(1, t) = \tilde{g}(t)$ . Moreover,  $\tilde{F}(s, 0)$  and  $\tilde{F}(s, 1)$  are the liftings of  $e_b$  and  $e_c$  respectively, so must be constant. Consequently,  $\tilde{f}(1) = \tilde{g}(1)$  and  $\tilde{F}$  is a path homotopy between  $\tilde{f}$  and  $\tilde{g}$ .

 $(ii) \Rightarrow (i)$ : If  $\tilde{f}$  and  $\tilde{g}$  are path homotopic with path homotopy  $\tilde{F}$ , then  $p \circ \tilde{f} = f$  and  $p \circ \tilde{g} = g$  are path homotopic with path homotopy  $p \circ \tilde{F}$ .

**Definition 8.14.** Let *X*, *Y* be topological spaces, and  $p: X \to Y$  a covering map. Let  $b \in Y$  and choose  $a \in X$  so that p(a) = b. Given an element [f] of  $\pi_1(Y, b)$ , let  $\tilde{f}: [0, 1] \to X$  be the lifting of *f* to a path in *X* that begins at *a*. Define the function

$$\phi: \pi_1(Y, b) \to p^{-1}(b), \quad [f] \mapsto \tilde{f}(1).$$

One calls  $\phi$  the **lifting correspondence** derived from the covering map p and the origin a.

**Proposition 8.15.** Let X, Y be topological spaces, and  $p : X \to Y$  a covering map. Let  $b \in Y$  and choose  $a \in X$  so that p(a) = b. If X is path connected, then the lifting correspondence

$$\phi: \pi_1(Y, b) \to p^{-1}(b), \quad [f] \mapsto \tilde{f}(1)$$

is surjective. If X is simply connected, then  $\phi$  is bijective.

*Proof.* Let  $a' \in p^{-1}(b)$ , and  $\tilde{f}: [0, 1] \to X$  a path from *a* to *a'*. The path  $\tilde{f}$  is the lifting of  $f = p \circ \tilde{f}$  which is a loop in *Y* at *b*, then  $\phi([f]) = a'$ , and  $\phi$  is consequently surjective.

Suppose that *X* is simply connected. Take  $[f], [g] \in \pi_1(Y, b)$  such that  $\phi([f]) = \phi([g])$ . Let  $\tilde{f}$  and  $\tilde{g}$  be the liftings of *f* and *g* respectively that begin at *a*. Then  $\tilde{f}(1) = \tilde{g}(1)$ . The fact *X* is simply connected implies the existence of a path homotopy  $\tilde{F}$  between  $\tilde{f}$  and  $\tilde{g}$ . Then  $p \circ \tilde{F}$  is path homotopy between *f* and *g*, that is [f] = [g].

**Theorem 8.16.** The group  $\pi_1(\mathbb{S}^1, (1, 0))$  is isomorphic to the additive group  $(\mathbb{Z}, +)$ .

*Proof.* Consider the covering map  $p : \mathbb{R} \to \mathbb{S}^1$  given by  $p(x) = (\cos 2\pi x, \sin 2\pi x)$ . We have  $p^{-1}((1, 0)) = \mathbb{Z}$ . Since  $\mathbb{R}$  is simply connected, we deduce from Proposition 8.15 that the lifting correspondence

$$\phi: \pi_1(\mathbb{S}^1, (1, 0)) \to \mathbb{Z}, \quad [f] \mapsto \tilde{f}(1)$$

is bijective. It remains to show that  $\phi$  is a homeomorphism.

Given  $[f], [g] \in \pi_1(\mathbb{S}^1, (1, 0))$ , let  $\tilde{f}, \tilde{g}$  be their respective liftings to paths in  $\mathbb{R}$  beginning at 0. Denote  $n = \tilde{f}(1)$  and  $m = \tilde{g}(1)$ . Define the path

$$\tilde{\tilde{g}}: [0, 1] \to \mathbb{R}, \quad t \mapsto n + \tilde{g}(t).$$

Since  $p \circ \tilde{\tilde{g}}(t) = p(n + \tilde{g}(t)) = p(\tilde{g}(t))$ , the path  $\tilde{\tilde{g}}$  is then the lifting of g that begins at n. Then  $\tilde{f} * \tilde{\tilde{g}} : [0, 1] \to \mathbb{R}$  is defined, and is the lifting of f \* g that begins at 0. As  $\tilde{f} * \tilde{\tilde{g}}(1) = \tilde{\tilde{g}}(1) = n + m$ , we obtain

$$\phi([f] * [g]) = n + m = \phi([f]) + \phi([g]).$$

### **Chapter 9**

## Homotopy

#### 9.1 Homotopy of Functions

**Definition 9.1.** Let *X*, *Y* be topological spaces, and *f*, *g* continuous functions from *X* into *Y*. One says that *f* is **homotopic** to *g* if there is a continuous function  $F : X \times [0, 1] \rightarrow Y$  such that

$$\forall x \in X, \quad F(x,0) = f(x) \quad \text{and} \quad F(x,1) = g(x).$$

In that case, one writes  $f \simeq g$ . The function F is called a **homotopy** between f and g.

**Lemma 9.2.** The relation  $\simeq$  on homotopic functions is an equivalence relation.

*Proof.* Given a function f, the function F(x, t) = f(x) is the required homotopy to get  $f \simeq f$ . If  $f \simeq g$  is got by a homotopy F(x, t), then G(x, t) = F(x, 1-t) is a homotopy between g and f. Suppose that  $f \simeq g$  by means of a homotopy F, and  $g \simeq h$  by means of a homotopy G, then  $f \simeq h$  by means of the homotopy  $H: X \times [0, 1] \to Y$  defined by the equation

$$H(x,t) = \begin{cases} F(x,2t) & \text{if } t \in [0,\frac{1}{2}], \\ G(x,2t-1) & \text{if } t \in [\frac{1}{2},1]. \end{cases}$$

**Definition 9.3.** Let *X* be a topological space, and  $A \subseteq X$ . A **retraction** of *X* onto *A* is a continuous function  $r: X \to A$  such that the restriction  $r: A \to A$  is the identity map of *A*. If such a function *r* exists, one says that *A* is a **retract** of *X*.

**Definition 9.4.** Let *X* be a topological space, and  $A \subseteq X$ . Suppose that there exists a continuous function  $F : X \times [0,1] \rightarrow X$  such that

$$\forall x \in X, \quad F(x,0) = x \quad \text{and} \quad F(x,1) \in A, \\ \forall t \in [0,1], \ \forall a \in A, \quad F(a,t) = a. \end{cases}$$

The homotopy *F* between the identity map F(x,0) of *X* and the retraction F(x,1) of *X* onto *A* is called a **deformation retraction** of *X* onto *A*, and *A* is called a **deformation retract** of *X*.

**Proposition 9.5.** Let X be a topological space,  $A \subseteq X$ , and  $x \in A$ . Consider the homomorphism  $i_* : \pi_1(A, x) \to \pi_1(X, x)$  induced by the inclusion map  $i : A \hookrightarrow X$ .

- (i) If A is a retract of X, then  $i_*$  is injective.
- (ii) If A is a deformation retract of X, then  $i_*$  is bijective.

*Proof.* (*i*): If  $r: X \to A$  is a retraction, then  $r \circ i$  is the identity map of A. It follows that  $(r \circ i)_* = r_* \circ i_*$  is the identity map of  $\pi_1(A, x)$ , which implies that  $i_*$  is injective.

(*ii*) : Suppose that  $F : X \times [0,1] \to X$  is a deformation retraction of X onto A. Since F(X, 1) = A, then for any loop  $f : [0,1] \to X$  based at x, F(f(.), .) is a homotopy between f and a loop F(f(.), 1) in A. Moreover, as F(f(0), t) = F(f(1), t) = x for every  $t \in [0, 1]$ , then  $f \simeq_p F(f(.), 1)$ . Hence  $\left[F(f(.), 1)\right] = [f]$ , meaning that  $[f] = i_* \left(\left[F(f(.), 1)\right]\right)$ , and  $i_*$  is consequently surjective.

*Example. There is no retraction of th real disc*  $\overline{B((0,0),1)}$  *onto*  $\mathbb{S}^1$ . Suppose, indeed, that  $\mathbb{S}^1$  is a retract of  $\overline{B((0,0),1)}$ . According to Proposition 9.5, the homomorphism  $i_* : \pi_1(\mathbb{S}^1, (1,0)) \to \pi_1(\overline{B((0,0),1)}, (1,0))$  induced by the inclusion map  $i : \mathbb{S}^1 \hookrightarrow \overline{B((0,0),1)}$  is injective. That is impossible, since  $\pi_1(\mathbb{S}^1, (1,0)) \cong \mathbb{Z}$  and  $\pi_1(\overline{B((0,0),1)}, (1,0)) \cong 0$ .

#### 9.2 Homotopy Equivalence

**Definition 9.6.** Let *X*, *Y* be a topological spaces, and  $f : X \to Y$ ,  $g : Y \to X$  continuous functions. Suppose that  $g \circ f : X \to X$  is homotopic to the identity map of *X*, and  $f \circ g : Y \to Y$  to the identity map of *Y*. Then, the functions *f* and *g* are said to be **homotopy equivalent**, and each is called a **homotopy inverse** of the other.

**Proposition 9.7.** Let X, Y be topological spaces, and  $F : X \times [0, 1] \rightarrow Y$  a homotopy between continuous functions f = F(., 0) and g = F(., 1). Take  $x \in X$ , and consider the path h = F(x, .) from f(x) to g(x). Then, the following diagram is commutative:

$$\pi_{1}(X, x) \xrightarrow{f_{*}} \pi_{1}(Y, f(x))$$

$$\downarrow^{g_{*}} \qquad \qquad \downarrow^{\hat{h}}$$

$$\pi_{1}(Y, g(x))$$

*Proof.* Let  $l: [0, 1] \to X$  be a loop based at *x*. Consider the continuous function

$$L: [0,1] \times [0,1] \to Y, \quad (s,t) \mapsto F(l(s),t),$$

and the points  $p_1 = (0, 0)$ ,  $p_2 = (1, 0)$ ,  $p_3 = (0, 1)$ ,  $p_4 = (1, 1)$ . Denoting  $L_{ij}$  the standard parametrisation of *L* restricted to the edge from  $p_i$  to  $p_j$ , where  $i, j \in \{1, 2, 3, 4\}$  and i < j, we get  $L_{12} * L_{24} \simeq_p$  $L_{14}$  and  $L_{13} * L_{34} \simeq_p L_{14}$  by Lemma 7.16, hence  $L_{12} * L_{24} \simeq_p L_{13} * L_{34}$ . Remark that  $L_{12} = f \circ l$ ,  $L_{13} = L_{24} = h$ ,  $L_{34} = g \circ l$ , hence

$$f \circ l * h = h * g \circ l$$
$$[f \circ l] * [h] = [h] * [g \circ l]$$
$$[\bar{h}] * [f \circ l] * [h] = [g \circ l]$$
$$\hat{h} \circ f_*([l]) = g_*([l]).$$

| г |  | 1 |
|---|--|---|
|   |  |   |
|   |  |   |

**Corollary 9.8.** Let X be a topological space, and  $f : X \to X$  a continuous function that is homotopic to the identity map of X. Then, for any  $x \in X$ , the function  $f_* : \pi_1(X, x) \to \pi_1(X, f(x))$  is a group isomorphism.

*Proof.* Let  $F: X \times [0, 1] \to X$  be a homotopy between the identity map F(., 0) = i of X and F(., 1) = f, and consider the path h = F(x, .) from x to f(x). Proposition 9.7 implies that  $f_* = \hat{h} \circ i_* = \hat{h}$ , which is a isomorphism from  $\pi_1(X, x)$  to  $\pi_1(X, f(x))$  by Proposition 7.11.

**Lemma 9.9.** Let A, B, C, D be sets, and f, g, h functions represented by the following diagram:

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D.$$

If  $g \circ f$  is bijective and  $h \circ g$  is injective, then f is bijective.

*Proof.* As  $g \circ f$  is injective, then f is injective.

Take  $b \in B$ . As  $g \circ f$  is surjective, there exists  $a \in A$  such that  $g \circ f(a) = g(b)$ . Remark that g is also injective since  $h \circ g$  is injective. The injectivity of g implies f(a) = b, hence h is surjective.  $\Box$ 

**Theorem 9.10.** Let X, Y be topological spaces,  $x \in X$ , and  $f : X \to Y$  a continuous function. If there exists a continuous function  $g : Y \to X$  homotopy equivalent to f, then  $f_* : \pi_1(X, x) \to \pi_1(Y, f(x))$  is an isomorphism.

*Proof.* Consider the following sequence of homomorphisms:

$$\pi_1(X, x) \xrightarrow{f_*} \pi_1(Y, f(x)) \xrightarrow{g_*} \pi_1(X, g \circ f(x)) \xrightarrow{f_*} \pi_1(Y, f \circ g \circ f(x)).$$

We know from Corollary 9.8 that  $g_* \circ f_*$  and  $f_* \circ g_*$  are isomorphisms. Morevore, we can deduce from Lemma 9.9 that  $f_*$  is bijective.

### Chapter 10

# **Singular Homology**

#### **10.1 Singular Homology**

**Proposition 10.1.** Let  $u_0, u_1, \ldots, u_p \in \mathbb{R}^n$ . The following conditions are equivalent:

- (i) the p vectors  $\overrightarrow{u_0u_1}, \overrightarrow{u_0u_2}, \dots \overrightarrow{u_0u_p}$  are linearly independent,
- (*ii*) if  $s_0, s_1, \ldots, s_p, t_0, t_1, \ldots, t_p \in \mathbb{R}$  such that

$$\sum_{i=0}^{p} s_{i}u_{i} = \sum_{i=0}^{p} t_{i}u_{i} \quad and \quad \sum_{i=0}^{p} s_{i} = \sum_{i=0}^{p} t_{i},$$

*then*  $s_i = t_i$  *for*  $i \in \{0, 1, ..., p\}$ *.* 

*Proof.* 
$$(i) \Rightarrow (ii)$$
: If  $\sum_{i=0}^{p} s_{i}u_{i} = \sum_{i=0}^{p} t_{i}u_{i}$  and  $\sum_{i=0}^{p} s_{i} = \sum_{i=0}^{p} t_{i}$ , then  

$$0 = \sum_{i=0}^{p} (s_{i} - t_{i})u_{i}$$

$$= \sum_{i=0}^{p} (s_{i} - t_{i})u_{i} - \left(\sum_{i=0}^{p} (s_{i} - t_{i})\right)u_{0}$$

$$= \sum_{i=1}^{p} (s_{i} - t_{i})(u_{i} - u_{0}).$$

As 
$$\overrightarrow{u_0u_1}, \overrightarrow{u_0u_2}, \dots, \overrightarrow{u_0u_p}$$
 are linearly independent, it follows that  $s_i = t_i$  for  $i \in \{1, \dots, p\}$ . Moreover,  

$$\sum_{i=0}^p s_i = \sum_{i=0}^p t_i \text{ implies } s_0 = t_0.$$

$$(ii) \Rightarrow (i) : \text{ If } \sum_{i=1}^p t_i (u_i - u_0) = 0, \text{ then } \sum_{i=1}^p t_i u_i = \left(\sum_{i=1}^p t_i\right) u_0. \text{ Hence, we must have } t_1 = \dots = t_n = 0. \square$$

**Definition 10.2.** Let  $n \in \mathbb{N}$ ,  $p \in \{1, ..., n\}$ , and  $u_0, u_1, ..., u_p \in \mathbb{R}^n$ . A *p*-simplex  $[u_0, u_1, ..., u_p]$  is a convex hull

$$\left\{ t_0 u_0 + t_1 u_1 + \dots + t_p u_p \mid t_0, t_1, \dots, t_p \in \mathbb{R}_+, \sum_{i=0}^p t_i = 1 \right\}$$

with ordered **vertices**  $u_0, u_1, \ldots, u_p$  such that the *p* vectors  $\overrightarrow{u_0u_1}, \overrightarrow{u_0u_2}, \ldots, \overrightarrow{u_0u_p}$  are linearly independent.

**Corollary 10.3.** If  $[u_0, u_1, ..., u_p]$  is a *p*-simplex in  $\mathbb{R}^n$ , then every point of  $[u_0, u_1, ..., u_p]$  has a distinct unique representation in the form  $\sum_{i=0}^{p} t_i u_i$ , with  $t_0, t_1, ..., t_p \in \mathbb{R}_+$  and  $\sum_{i=0}^{p} t_i = 1$ .

*Proof.* It is Proposition 10.1 with the conditions  $t_0, t_1, \ldots, t_p \in \mathbb{R}_+$  and  $\sum_{i=0}^p t_i = 1$ .

*Example.* The **standard** *n***-simplex** is convex hull

$$\Delta^{n} := \left\{ (t_0, t_1, \dots, t_n) \in \mathbb{R}^{n+1} \mid t_0, t_1, \dots, t_p \in \mathbb{R}_+, \sum_{i=0}^{n} t_i = 1 \right\} = [e_0, e_1, \dots, e_n]$$

of the ordered vertices  $e_0 = (0, ..., 0), e_1 = (1, 0, ..., 0), ..., e_n = (0, ..., 0, 1).$ 

Definition 10.4. Let X be a topological space. A singular *n*-simplex in X is a continuous function

$$\sigma: \Delta^n \to X$$

Denote  $S_n(X)$  the set of singular *n*-simplices in *X*. Let  $C_n(X)$  be the free abelian group with basis  $S_n(X)$ , that is,

$$C_n(X) := \Big\{ \sum_{a \in A} n_a \sigma_a \ \Big| \ \#A \in \mathbb{N}, n_a \in \mathbb{Z}, \sigma_a \in S_n(X) \Big\}.$$

Elements of  $C_n(X)$  are called singular *n*-chains.

**Definition 10.5.** Let X be a topological space, and  $i \in \{0, 1, ..., n\}$ . The *i*<sup>th</sup> face operator is the homomorphism

$$\partial_i : C_n(X) \to C_{n-1}(X), \quad \sum_{a \in A} n_a \sigma_a \mapsto \sum_{a \in A} n_a \sigma_a | [e_0, e_1, \dots, \hat{e}_i, \dots, e_n],$$

where  $[e_0, e_1, \dots, \hat{e}_i, \dots, e_n]$  is the n-1-simplex with vertices  $e_0, \dots, e_{i-1}, e_{i+1}, \dots, e_n$ . The **boundary operator** is the homomorphism

$$\partial: C_n(X) \to C_{n-1}(X), \quad \sigma \mapsto \sum_{i=0}^n (-1)^i \partial_i(\sigma).$$

**Proposition 10.6.** Let X be a topological space. The following composition is zero:

$$C_n(X) \xrightarrow{\partial} C_{n-1}(X) \xrightarrow{\partial} C_{n-2}(X).$$

*Proof.* For  $\sigma \in C_n(X)$ , we have  $\partial(\sigma) = \sum_{i=0}^n (-1)^i \sigma | [e_0, \dots, \hat{e}_i, \dots, e_n]$ . Remark that

$$\partial \sigma | [e_0, \dots, \hat{e}_i, \dots, e_n] = \sum_{j=0}^{i-1} (-1)^j \sigma | [e_0, \dots, \hat{e}_j, \dots, \hat{e}_i, \dots, e_n] + \sum_{j=i+1}^n (-1)^{j-1} \sigma | [e_0, \dots, \hat{e}_i, \dots, \hat{e}_j, \dots, e_n].$$

Then,

$$\begin{aligned} \partial \circ \partial(\sigma) &= \sum_{i=0}^{n} \sum_{\substack{j=0\\j=0}}^{i-1} (-1)^{i+j} \sigma |[e_0, \dots, \hat{e}_j, \dots, \hat{e}_i, \dots, e_n] + \sum_{\substack{i=0\\j=i+1}}^{n} \sum_{\substack{j=i+1\\j=i}}^{n} (-1)^{i+j-1} \sigma |[e_0, \dots, \hat{e}_j, \dots, \hat{e}_i, \dots, e_n] + \sum_{\substack{i,j \in \{0, \dots, n\}\\i < j}} (-1)^{i+j-1} \sigma |[e_0, \dots, \hat{e}_i, \dots, \hat{e}_j, \dots, e_n] \\ &= 0. \end{aligned}$$

**Definition 10.7.** Let X be a topological space. The singular complex  $C_{\bullet}(X)$  of X is the homomorphism sequence

$$\cdots \xrightarrow{\partial} C_{n+1}(X) \xrightarrow{\partial} C_n(X) \xrightarrow{\partial} C_{n-1}(X) \xrightarrow{\partial} \cdots \xrightarrow{\partial} C_1(X) \xrightarrow{\partial} C_0(X) \xrightarrow{\partial} 0.$$

The group of singular *n*-cycles of *X* is  $Z_n(X) := \{ \sigma \in C_n(X) \mid \partial(\sigma) = 0 \}$ . The group of singular *n*-boundaries of *X* is  $B_n(X) := \{ \sigma \in C_n(X) \mid \exists \tau \in C_{n+1}(X), \partial(\tau) = \sigma \}$ . The quotient group

$$H_n(X) = Z_n(X)/B_n(X)$$

is the  $n^{\text{th}}$  singular homology group of X.

*Example. If x is a point, then*  $H_0({x}) \cong \mathbb{Z}$ *, and*  $H_n({x}) = 0$  *for*  $n \in \mathbb{N}$ *.* Indeed, for every nonnegative integer n,  $C_n({x}) = \mathbb{Z}{\sigma}$ , where  $\sigma : \Delta^n \to {x}$ ,  $t \mapsto x$ . Moreover, for every  $z\sigma \in C_n({x})$ ,

$$\partial(z\sigma) = \sum_{i=0}^{n} (-1)^{i} \partial_{i}(z\sigma) = \sum_{i=0}^{n} (-1)^{i} z\sigma = \begin{cases} z\sigma & \text{if } n \text{ is even and } n \neq 0, \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$

The singular complex of  $\{x\}$  is then

$$\cdots \xrightarrow{0} \mathbb{Z}\{\sigma\} \xrightarrow{\text{restriction}} \mathbb{Z}\{\sigma\} \xrightarrow{0} \mathbb{Z}\{\sigma\} \xrightarrow{\text{restriction}} \mathbb{Z}\{\sigma\} \xrightarrow{0} \mathbb{Z}\{\sigma\} \xrightarrow{0} 0.$$

Hence,

- $Z_0(\lbrace x \rbrace) = \mathbb{Z}\{\sigma\}$  and  $B_0(\lbrace x \rbrace) = \lbrace 0 \rbrace$ , implying  $H_0(\lbrace x \rbrace) = \mathbb{Z}\{\sigma\}/\{0\} \cong \mathbb{Z}$ ,
- if *n* is even and  $n \neq 0$ ,  $Z_n(\{x\}) = \{0\}$  and  $B_n(\{x\}) = \{0\}$ , then  $H_n(\{x\}) = \{0\}/\{0\} = \{0\}$ ,
- if *n* is odd,  $Z_n({x}) = \mathbb{Z}{\sigma}$  and  $B_n({x}) = \mathbb{Z}{\sigma}$ , then  $H_n({x}) = \mathbb{Z}{\sigma}/\mathbb{Z}{\sigma} \cong {0}$ .

**Proposition 10.8.** Let X be a topological space. Suppose that  $X = \bigsqcup_{i \in I} X_i$ , where  $X_i$  is a path component. Then,

$$H_n(X) \cong \bigoplus_{i \in I} H_n(X_i)$$

*Proof.* Let  $\sigma$  be a singular *n*-simplex in *X*. Since  $\Delta^n$  is path connected, then  $\sigma(\Delta^n)$  is path connected, meaning that  $\sigma(\Delta^n) \subseteq X_i$  for some  $i \in I$ . Then  $C_n(X) = \bigoplus_{i \in I} C_n(X_i)$ . Moreover,  $\partial (C_n(X_i)) \subseteq C_n(X_i)$  hence  $Z_n(X) = \bigoplus_{i \in I} C_n(X_i)$ . Consider the network homeomorphism

 $C_{n-1}(X_i)$ , hence  $Z_n(X) = \bigoplus_{i \in I} Z_n(X_i)$  and  $B_n(X) = \bigoplus_{i \in I} B_n(X_i)$ . Consider the natural homomorphism  $p : \bigoplus_{i \in I} Z_n(X_i) \mapsto \bigoplus_{i \in I} Z_n(X_i) / B_n(X_i), \ (\sigma_i)_{i \in I} \mapsto (\dot{\sigma}_i)_{i \in I}$  which the canonical projection on each coordi-

nate. It is obviously surjective, and ker  $p = \bigoplus_{i \in I} B_n(X_i)$ . Therefore

$$H_n(X) = \bigoplus_{i \in I} Z_n(X_i) / \bigoplus_{i \in I} B_n(X_i) \cong \bigoplus_{i \in I} Z_n(X_i) / B_n(X_i) = \bigoplus_{i \in I} H_n(X_i).$$

**Proposition 10.9.** Let X be a topological space. Suppose that  $X = \bigsqcup_{i \in I} X_i$ , where  $X_i$  is a path component. Then,

 $H_0(X) \cong \underbrace{\underbrace{^{\#I \ times}}_{\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots}}_{\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots}.$ 

*Proof.* Define a homomorphism  $h: C_0(X_i) \to \mathbb{Z}$ ,  $\sum_{j \in J} n_j \sigma_j \mapsto \sum_{j \in J} n_j$ . It is obviously surjective as  $X_i$  is assumed to be nonempty. For every  $\sigma \in S_1(X_i)$ , we have  $h \circ \partial(\sigma) = h(\sigma|[e_1] - \sigma|[e_0]) = 1 - 1 = 0$ . It follows that  $\{\tau \in C_0(X_i) \mid \exists \sigma \in C_1(X_i), \partial(\sigma) = \tau\} = B_0(X_i) \subseteq \ker h$ . Now, let  $\sum_{j \in J} n_j \sigma_j \in C_0(X_i)$  such that  $h(\sum_{i \in J} n_j \sigma_i) = 0$ . Take a point  $x \in X_i$  and note that, for each  $j \in J$ ,

there exists a singular 1-simplex  $\tau_j : [e_0, e_1] \to X_i$  such that  $\tau_j(e_0) = \sigma(e_0)$  and  $\tau_j(e_1) = x$ . We have

$$\partial \left(\sum_{j \in J} n_j \tau_j\right) = \sum_{j \in J} n_j \sigma_j - \left(\sum_{j \in J} n_j\right) \phi = \sum_{j \in J} n_j \sigma_j \quad \text{with} \quad \phi : [e_0] \to X_i, \ e_0 \mapsto x_i$$

Hence ker  $h \subseteq \{\sigma \in C_0(X_i) \mid \exists \tau \in C_1(X_i), \partial(\tau) = \sigma\} = B_0(X_i).$ We deduce that  $B_0(X_i) = \text{ker } h$ . Therefore

$$H_0(X_i) = Z_0(X_i)/B_0(X_i) = C_0(X_i)/\ker h \cong h(C_0(X_i)) = \mathbb{Z}.$$

$$\stackrel{\text{#}I \text{ times}}{\longrightarrow} \bigoplus \mathbb{Z} \oplus \mathbb{Z} \oplus$$

Finally, we get  $H_0(X) \cong \cdots \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots$  by Proposition 10.8.

#### **10.2 Homotopy Invariance**

**Definition 10.10.** Let *X*, *Y* be topological spaces, and  $f : X \to Y$  a continuous function. The **homomorphism induced on singular** *n***-chains** by *f* is

$$f_{\sharp}: C_n(X) \to C_n(Y), \quad \sum_{a \in A} n_a \sigma_a \mapsto \sum_{a \in A} n_a f \circ \sigma_a.$$

**Lemma 10.11.** Let X, Y be topological spaces, and  $f : X \to Y$  a continuous function. The following diagram is commutative:

$$\cdots \xrightarrow{\partial} C_{n+1}(X) \xrightarrow{\partial} C_n(X) \xrightarrow{\partial} C_{n-1}(X) \xrightarrow{\partial} \cdots$$
$$\downarrow^{f_{\sharp}} \qquad \downarrow^{f_{\sharp}} \qquad \downarrow^{f_{\sharp}} \qquad \downarrow^{f_{\sharp}}$$
$$\cdots \xrightarrow{\partial} C_{n+1}(Y) \xrightarrow{\partial} C_n(Y) \xrightarrow{\partial} C_{n-1}(Y) \xrightarrow{\partial} \cdots$$

*Proof.* Let  $\sigma \in C_n(X)$ . We have

$$f_{\sharp} \circ \partial(\sigma) = f_{\sharp} \left( \sum_{i=0}^{n} (-1)^{i} \sigma | [e_{0}, e_{1}, \dots, \hat{e}_{i}, \dots, e_{n}] \right)$$
$$= \sum_{i=0}^{n} (-1)^{i} f_{\sharp} \circ \sigma | [e_{0}, e_{1}, \dots, \hat{e}_{i}, \dots, e_{n}]$$
$$= \partial(f_{\sharp} \circ \sigma).$$

**Proposition 10.12.** Let X, Y be topological spaces, and  $f : X \to Y$  a continuous function. Then,  $f_{\sharp}$  induces a homomorphism

$$f_{\star}: H_n(X) \to H_n(Y), \quad \sigma + B_n(X) \mapsto f_{\sharp}(\sigma) + B_n(Y).$$

Proof. Using Lemma 10.11:

• If 
$$\sigma \in Z_n(X)$$
, then  $\partial (f_{\sharp}(\sigma)) = f_{\sharp}(\partial(\sigma)) = f_{\sharp}(0) = 0$ , so  $f_{\sharp}(Z_n(X)) \subseteq Z_n(Y)$ ,

• if  $\sigma \in C_{n+1}(X)$ , then  $f_{\sharp}(\partial(\sigma)) = \partial(f_{\sharp}(\sigma))$ , so  $f_{\sharp}(B_n(X)) \subseteq B_n(Y)$ .

Hence, for every  $\sigma + B_n(X) \in H_n(X)$ ,  $f_*(\sigma + B_n(X)) = f_{\sharp}(\sigma) + B_n(Y) \in H_n(Y)$  is well-defined. And  $f_*(\sigma + \tau + B_n(X)) = f_{\sharp}(\sigma + \tau) + B_n(Y) = f_{\sharp}(\sigma) + f_{\sharp}(\tau) + B_n(Y) = f_*(\sigma + B_n(X)) + f_*(\tau + B_n(X))$ .

**Definition 10.13.** Let *X*, *Y* be topological spaces, and  $f : X \to Y$  a continuous function. The homomorphism induced on homology groups by *f* is

$$f_{\star}: H_n(X) \to H_n(Y), \quad \sigma + B_n(X) \mapsto f_{\sharp}(\sigma) + B_n(Y).$$

**Proposition 10.14.** Let X, Y, Z be topological spaces, and  $f : X \to Y$ ,  $g : Y \to Z$  continuous functions. In particular, let  $i_X : X \to X$  and  $i : H_n(X) \to H_n(X)$  be the identity maps of X and  $H_n(X)$  respectively. Then,

- $(i) \ (g \circ f)_{\star} = g_{\star} \circ f_{\star},$
- $(ii) (i_X)_{\star} = i.$

*Proof.* (*i*) : If  $\sum_{a \in A} n_a \sigma_a \in C_n(X)$ , we have

$$g_{\sharp} \circ f_{\sharp} \Big( \sum_{a \in A} n_a \sigma_a \Big) = g_{\sharp} \Big( \sum_{a \in A} n_a f \circ \sigma_a \Big) = \sum_{a \in A} n_a g \circ f \circ \sigma_a = (g \circ f)_{\sharp} \Big( \sum_{a \in A} n_a \sigma_a \Big).$$

Hence, if  $\sigma + B_n(X) \in H_n(X)$ ,

$$g_{\star} \circ f_{\star} \left( \sigma + B_n(X) \right) = g_{\star} \left( f_{\sharp}(\sigma) + B_n(Y) \right)$$
$$= g_{\sharp} \circ f_{\sharp}(\sigma) + B_n(Z)$$
$$= (g \circ f)_{\sharp}(\sigma) + B_n(Z)$$
$$= (g \circ f)_{\star} \left( \sigma + B_n(X) \right).$$

$$(ii): \text{For } \boldsymbol{\sigma} + B_n(X) \in H_n(X), \ (i_X)_{\star} \big( \boldsymbol{\sigma} + B_n(X) \big) = (i_X)_{\sharp}(\boldsymbol{\sigma}) + B_n(X) = \boldsymbol{\sigma} + B_n(X).$$

For a nonnegative integer *n*, set  $\Delta^n \times \{0\} := [e_0^0, e_1^0, \dots, e_n^0]$  and  $\Delta^n \times \{1\} := [e_0^1, e_1^1, \dots, e_n^1]$  such that  $e_i^0$  and  $e_i^1$  have the same image  $e_i$  under the projection  $\Delta^n \times \{0, 1\} \to \Delta^n$ , where  $i \in \{0, 1, \dots, n\}$ .

Proposition 10.15. Let n be a nonnegative integer. Then

$$\Delta^n \times [0, 1] = \bigcup_{i=0}^n [e_0^0, \dots, e_{i-1}^0, e_i^0, e_i^1, e_{i+1}^1, \dots, e_n^1].$$

*Proof.* Let  $u = \sum_{j=0}^{i} t_{j}^{0} e_{j}^{0} + \sum_{j=i}^{n} t_{j}^{1} e_{j}^{1} \in [e_{0}^{0}, \dots, e_{i-1}^{0}, e_{i}^{0}, e_{i}^{1}, e_{i+1}^{1}, \dots, e_{n}^{1}]$ . If  $u = (\lambda_{0}, \lambda_{1}, \dots, \lambda_{n+1})$ , then  $\sum_{k=0}^{n} \lambda_{k} = \sum_{j=0}^{i} t_{j}^{0} + \sum_{j=i}^{n} t_{j}^{1} = 1 \quad \text{and} \quad \lambda_{n+1} = \sum_{j=i}^{n} t_{j}^{1} \in [0, 1].$ 

Hence  $[e_0^0, \ldots, e_{i-1}^0, e_i^0, e_i^1, e_{i+1}^1, \ldots, e_n^1] \subseteq \Delta^n \times [0, 1].$ Now, take  $(\lambda_0, \lambda_1, \ldots, \lambda_{n+1}) \in \Delta^n \times [0, 1].$  Let  $i = \max\left\{j \in \{0, 1, \ldots, n\} \mid \sum_{j=i}^n \lambda_j \ge \lambda_{n+1}\right\}.$  Then,

$$(\lambda_0,\lambda_1,\ldots,\lambda_{n+1}) = \sum_{j=0}^{i-1} \lambda_j e_j^0 + \left(\lambda_i - \lambda_{n+1} + \sum_{j=i}^n \lambda_j\right) e_i^0 + \left(\lambda_{n+1} - \sum_{j=i}^n \lambda_j\right) e_i^1 + \sum_{j=i+1}^n \lambda_j e_j^1$$

which belongs to  $[e_0^0, \dots, e_i^0, e_i^1, \dots, e_n^1]$ . Hence  $\Delta^n \times [0, 1] \subseteq \bigcup_{i=0}^n [e_0^0, \dots, e_i^0, e_i^1, \dots, e_n^1]$ .

**Definition 10.16.** Let *X*, *Y* be topological spaces,  $id : [0, 1] \rightarrow [0, 1]$  the identity map, and  $F : X \times [0, 1] \rightarrow Y$  a continuous function. The composition  $F \circ (\sigma \times id) : \Delta^n \times [0, 1] \rightarrow X \times [0, 1] \rightarrow Y$  is well-defined and the **prism operator** of *F* is the function

$$P: C_n(X) \to C_{n+1}(Y), \quad \sigma \mapsto \sum_{i=0}^n (-1)^i F \circ (\sigma \times id) | [e_0^0, \dots, e_{i-1}^0, e_i^0, e_i^1, e_{i+1}^1, \dots, e_n^1].$$

**Proposition 10.17.** Let X, Y be topological spaces,  $f : X \to Y$ ,  $g : X \to Y$  continuous functions, and  $F : X \times [0, 1] \to Y$  a homotopy between f and g. Then,

$$\partial \circ P = g_{\sharp} - f_{\sharp} - P \circ \partial.$$

Proof. Denote

$$F_{i,j}^{0} = F \circ (\sigma \times id) | [e_{0}^{0}, \dots, \widehat{e_{j}^{0}}, \dots, e_{i}^{0}, e_{i}^{1}, \dots, e_{n}^{1}] \text{ and } F_{i,j}^{1} = F \circ (\sigma \times id) | [e_{0}^{0}, \dots, e_{i}^{0}, e_{i}^{1}, \dots, \widehat{e_{j}^{1}}, \dots, e_{n}^{1}].$$

We have

$$\begin{split} \partial \circ P(\sigma) &= \partial \left( \sum_{i=0}^{n} (-1)^{i} F \circ (\sigma \times id) | [e_{0}^{0}, \dots, e_{i-1}^{0}, e_{i}^{0}, e_{i}^{1}, e_{i+1}^{1}, \dots, e_{n}^{1}] \right) \\ &= \sum_{i=0}^{n} (-1)^{i} \partial \left( F \circ (\sigma \times id) | [e_{0}^{0}, \dots, e_{i-1}^{0}, e_{i}^{0}, e_{i}^{1}, e_{i+1}^{1}, \dots, e_{n}^{1}] \right) \\ &= \sum_{i=0}^{n} (-1)^{i} \left( \sum_{j=0}^{i} (-1)^{j} F_{i,j}^{0} + \sum_{j=i}^{n} (-1)^{j+1} F_{i,j}^{1} \right) \\ &= \sum_{i=0}^{n} \sum_{j=0}^{i} (-1)^{i+j} F_{i,j}^{0} + \sum_{i=0}^{n} \sum_{j=i}^{n} (-1)^{i+j+1} F_{i,j}^{1} \end{split}$$

Remark that  $[e_0^0, \dots, e_i^0, \widehat{e_i^1}, e_{i+1}^1, \dots, e_n^1] = [e_0^0, \dots, e_i^0, \widehat{e_{i+1}^0}, e_{i+1}^1, \dots, e_n^1]$ , which implies  $F_{i,i}^1 = F_{i+1,i+1}^0$ . Hence

$$\partial \circ P(\sigma) = F_{0,0}^0 + \sum_{i=0}^n \sum_{j=0}^{i-1} (-1)^{i+j} F_{i,j}^0 + \sum_{i=0}^n \sum_{j=i+1}^n (-1)^{i+j+1} F_{i,j}^1 - F_{n,n}^1.$$

Note that  $F_{0,0}^0 = F \circ (\sigma \times id) | [\hat{e_0^0}, e_0^1, e_1^1, \dots, e_n^1] = g_{\sharp}$  and  $F_{n,n}^1 = F \circ (\sigma \times i) | [e_0^0, \dots, e_{n-1}^0, e_n^0, \hat{e_n^1}] = f_{\sharp}$ . Moreover,

$$P \circ \partial(\sigma) = P\left(\sum_{i=0}^{n} (-1)^{i} \sigma | [e_{0}, \dots, \hat{e}_{i}, \dots, e_{n}]\right)$$
$$= \sum_{i=0}^{n} (-1)^{i} \sum_{j=i+1}^{n} (-1)^{j} F_{i,j}^{1} + \sum_{i=0}^{n} (-1)^{i-1} \sum_{j=0}^{i-1} (-1)^{j} F_{i,j}^{0}$$
$$= \sum_{i=0}^{n} \sum_{j=0}^{i-1} (-1)^{i+j-1} F_{i,j}^{0} + \sum_{i=0}^{n} \sum_{j=i+1}^{n} (-1)^{i+j} F_{i,j}^{1}.$$

Therefore  $\partial \circ P = g_{\sharp} - P \circ \partial - f_{\sharp}$ .

**Theorem 10.18.** Let *X*, *Y* be topological spaces, and  $f : X \to Y$ ,  $g : X \to Y$  continuous functions. If f and g are homotopic, then  $f_* = g_*$ .

*Proof.* Let *P* be the prism operator of a homotopy between *f* and *g*. If  $\sigma \in Z_n(X)$ , we then know from Proposition 10.17 that  $g_{\sharp}(\sigma) - f_{\sharp}(\sigma) = \partial \circ P(\sigma) + P \circ \partial(\sigma) = \partial \circ P(\sigma)$ , since  $\partial(\sigma) = 0$ . Thus  $g_{\sharp}(\sigma) - f_{\sharp}(\sigma) \in B_n(Y)$ , meaning that  $g_{\sharp}(\sigma) + B_n(Y) = f_{\sharp}(\sigma) + B_n(Y)$ . So, for all  $\sigma + B_n(X) \in H_n(X)$ ,

$$g_{\star}(\sigma+B_n(X))=g_{\sharp}(\sigma)+B_n(Y)=f_{\sharp}(\sigma)+B_n(Y)=f_{\star}(\sigma+B_n(X)).$$

**Corollary 10.19.** Let X, Y be topological spaces, and  $f : X \to Y$  a continuous function. If f is homotopy equivalent some function, then  $f_* : H_n(X) \to H_n(Y)$  is an isomorphism.

*Proof.* Let  $g: Y \to X$  be a function homotopy equivalent to f. Moreover, let  $i_X, i_Y, i_{H_n(X)}, i_{H_n(Y)}$  be the identity maps of  $X, Y, H_n(X), H_n(Y)$  respectively. Using Proposition 10.14 and Theorem 10.18, we get

•  $g_{\star} \circ f_{\star} = (g \circ f)_{\star} = (i_X)_{\star} = i_{H_n(X)},$ 

• 
$$f_{\star} \circ g_{\star} = (f \circ g)_{\star} = (i_Y)_{\star} = i_{H_n(Y)}.$$

Hence,  $g_{\star} = f_{\star}^{-1}$ , which implies that  $f_{\star}$  is an isomorphism.

*Example.* If X is a convex set in  $\mathbb{R}^n$ , then  $H_0(X) \cong \mathbb{Z}$ , and  $H_n(X) = 0$  for  $n \in \mathbb{N}$ . Indeed, if  $a \in X$ , the function

$$F: X \times [0, 1] \rightarrow X, \quad (x, t) \mapsto ta + (1 - t)x$$

is a deformation retraction of X onto  $\{a\}$ . Consider both functions

$$f: X \to \{a\}, x \mapsto a \text{ and } g: \{a\} \to X, x \to x.$$

Denoting  $i_X, i_{\{a\}}$  the identity maps of X and  $\{a\}$  respectively, we see that

- $g \circ f = f$  which is homotopic to  $i_X$  by the deformation retraction F,
- $f \circ g = i_{\{a\}}$ .

Hence, *f* and *g* are homotopy equivalent. We deduce from Corollary 10.19 that  $f_*: H_n(X) \to H_n(\{a\})$  is an isomorphism.

C f f

#### **10.3 Relative Homology Groups**

**Definition 10.20.** Let X be a topological space, and  $A \subseteq X$ . The free abelian subgroup  $C_n(A)$  is

$$C_n(A) := \Big\{ \sum_{i \in I} n_i \sigma_i \in C_n(X) \ \Big| \ \sigma_i(\Delta^n) \subseteq A \Big\}.$$

The relative *n*-chains are the elements of the quotient group  $C_n(X, A) := C_n(X)/C_n(A)$ .

**Lemma 10.21.** Let X be a topological space, and  $A \subseteq X$ . The boundary operator  $\partial : C_n(X) \to C_{n-1}(X)$  induces the quotient boundary operator

$$\dot{\partial}: C_n(X, A) \to C_{n-1}(X, A), \quad \sigma + C_n(A) \mapsto \dot{\partial}(\sigma) + C_{n-1}(A).$$

*Proof.* Let  $\tau = \sum_{i \in I} n_i \tau_i \in C_n(A)$  and  $j \in \{0, 1, ..., n\}$ . Since  $\tau_i | [e_0, e_1, ..., \hat{e}_j, ..., e_n](\Delta^{n-1}) \subseteq A$ , then  $\partial(\tau) \in C_{n-1}(A)$ . Hence  $\partial(C_n(A)) \subseteq C_{n-1}(A)$ , and  $\dot{\partial}: C_n(X, A) \to C_{n-1}(X, A)$  is well-defined.  $\Box$ 

**Definition 10.22.** Let *X* be a topological space, and  $A \subseteq X$ . The **relative complex**  $C_{\bullet}(X, A)$  of *X* relative to *A* is

$$\cdots \xrightarrow{\dot{\partial}} C_{n+1}(X,A) \xrightarrow{\dot{\partial}} C_n(X,A) \xrightarrow{\dot{\partial}} C_{n-1}(X,A) \xrightarrow{\dot{\partial}} \cdots \xrightarrow{\dot{\partial}} C_1(X,A) \xrightarrow{\dot{\partial}} C_0(X,A) \xrightarrow{\dot{\partial}} 0.$$

The group of **relative** *n***-cycles** of *X* relative to *A* is

$$Z_n(X,A) := \{ \boldsymbol{\sigma} + C_n(A) \in C_n(X,A) \mid \partial(\boldsymbol{\sigma}) \in C_{n-1}(A) \}.$$

The group of **relative** *n***-boundaries** of *X* relative to *A* is

$$B_n(X,A) := \big\{ \sigma + C_n(A) \in C_n(X,A) \mid \exists \tau \in C_{n+1}(X), \upsilon \in C_n(A), \partial(\tau) = \sigma + \upsilon \big\}.$$

The quotient group

$$H_n(X,A) = Z_n(X,A)/B_n(X,A)$$

is the  $n^{\text{th}}$  relative homology group of X relative to A.

Denote  $f: (X, A) \to (Y, B)$  a function  $f: X \to Y$  such that  $A \subseteq X, B \subseteq Y$ , and  $f(A) \subseteq B$ .

**Lemma 10.23.** Let X, Y be topological spaces,  $A \subseteq X$ ,  $B \subseteq Y$ , and  $f : (X, A) \to (Y, B)$  a continuous function. The homomorphism  $f_{\sharp} : C_n(X) \to C_n(Y)$  induces the homomorphism on relative n-chains

$$\dot{f}_{\sharp}: C_n(X, A) \to C_n(Y, B), \quad \sigma + C_n(A) \mapsto f_{\sharp}(\sigma) + C_n(B).$$

*Proof.* If  $\sum_{i \in I} n_i \sigma_i \in C_n(A)$ , then  $f_{\sharp} \left( \sum_{i \in I} n_i \sigma_i \right) = \sum_{i \in I} n_i f \circ \sigma_i \in C_n(B)$ . Hence  $f_{\sharp} \left( C_n(A) \right) \subseteq C_n(B)$ , and  $\dot{f}_{\sharp} : C_n(X, A) \to C_n(Y, B)$  is well-defined.

**Lemma 10.24.** Let X, Y be topological spaces,  $A \subseteq X$ ,  $B \subseteq Y$ , and  $f : (X, A) \to (Y, B)$  a continuous function. The homomorphism  $f_* : H_n(X) \to H_n(Y)$  induces the homomorphism on relative homology groups

$$\dot{f}_{\star}: H_n(X, A) \to H_n(Y, B), \quad \sigma + B_n(X, A) \mapsto f_{\sharp}(\sigma) + B_n(Y, B)$$

Proof. We have:

• If  $\sigma + C_n(A) \in Z_n(X, A)$ , then

$$\partial \left( f_{\sharp} \big( \boldsymbol{\sigma} + C_n(A) \big) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) + C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = f_{\sharp} \big( \partial(\boldsymbol{\sigma}) \big) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( C_n(B) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) = \partial \left( f_{\sharp}(\boldsymbol{\sigma}) \right) + \partial$$

Since  $\partial(\sigma) \in C_{n-1}(A)$ , then  $f_{\sharp}(\partial(\sigma)) + \partial(C_n(B)) \subseteq C_{n-1}(B)$ , so  $f_{\sharp}(Z_n(X,A)) \subseteq Z_n(Y,B)$ .

• If  $\sigma + C_{n+1}(A) \in C_{n+1}(X, A)$ , then

$$f_{\sharp}\Big(\partial\big(\sigma+C_{n+1}(A)\big)\Big)=\partial\Big(f_{\sharp}\big(\sigma+C_{n+1}(A)\big)\Big)=\partial\big(f_{\sharp}(\sigma)+C_{n+1}(B)\big),$$

hence  $f_{\sharp}(B_n(X, A)) \subseteq B_n(Y, B)$ .

Like in Proposition 10.12, we deduce that  $f_{\sharp}$  induces a homomorphism  $f_{\star}: H_n(X, A) \to H_n(Y, B)$ .  $\Box$ 

**Proposition 10.25.** Let X, Y be topological spaces,  $A \subseteq X$ ,  $B \subseteq Y$ , and  $f : (X, A) \to (Y, B)$ ,  $g : (X, A) \to (Y, B)$  continuous functions. Suppose that there exists a homotopy  $F : X \times [0, 1] \to Y$  between f and g such that

$$\forall t \in [0, 1], F(A, t) \subseteq B.$$

Then  $\dot{f}_{\star}: H_n(X, A) \to H_n(Y, B) = \dot{g}_{\star}: H_n(X, A) \to H_n(Y, B).$ 

*Proof.* If  $\sigma \in C_n(X)$  such that  $\sigma(\Delta^n) \subseteq A$ , we get the composition  $F \circ (\sigma \times id) : \Delta^n \times [0, 1] \to A \times [0, 1] \to B$ . The prism operator *P* of *F* then takes  $C_n(A)$  to  $C_{n+1}(B)$ . Hence, it induces a relative prism operator

$$\dot{P}: C_n(X, A) \to C_{n+1}(Y, B), \quad \sigma + C_n(A) \mapsto P(\sigma) + C_{n+1}(B).$$

Besides, for every  $\sigma + C_n(A) \in C_n(X, A)$ ,  $\dot{\partial} \circ \dot{P}(\sigma + C_n(A)) = \dot{\partial} (P(\sigma) + C_{n+1}(B)) = \partial \circ P(\sigma) + C_n(B)$ and  $\dot{P} \circ \dot{\partial} (\sigma + C_n(A)) = \dot{P} (\partial (\sigma) + C_{n-1}(A)) = P \circ \partial (\sigma) + C_n(B)$ . So, by Proposition 10.17,

$$\begin{split} \dot{\partial} \circ \dot{P}\big(\sigma + C_n(A)\big) + \dot{P} \circ \dot{\partial}\big(\sigma + C_n(A)\big) &= \partial \circ P(\sigma) + P \circ \partial(\sigma) + C_n(B) \\ &= g_{\sharp}(\sigma) - f_{\sharp}(\sigma) + C_n(B) \\ &= \dot{g}_{\sharp}\big(\sigma + C_n(A)\big) - \dot{f}_{\sharp}\big(\sigma + C_n(A)\big). \end{split}$$

If  $\sigma + C_n(A) \in Z_n(X, A)$ , since  $\dot{\partial} (\sigma + C_n(A)) = C_{n-1}(A)$ , then

$$\dot{g}_{\sharp}(\sigma + C_n(A)) - \dot{f}_{\sharp}(\sigma + C_n(A)) = \dot{\partial} \circ \dot{P}(\sigma + C_n(A)).$$

Thus  $\dot{g}_{\sharp}(\sigma + C_n(A)) - \dot{f}_{\sharp}(\sigma + C_n(A)) \in B_n(Y, B)$ , meaning that  $g_{\sharp}(\sigma) + B_n(Y, B) = f_{\sharp}(\sigma) + B_n(Y, B)$ . So, for all  $\sigma + B_n(X, A) \in H_n(X, A)$ ,

$$\dot{g}_{\star}(\sigma+B_n(X,A))=g_{\sharp}(\sigma)+B_n(Y,B)=f_{\sharp}(\sigma)+B_n(Y,B)=\dot{f}_{\star}(\sigma+B_n(X,A)).$$

# **Bibliography**

- [1] J. Dixmier, General Topology, Undergrad. Texts Math., 1984.
- [2] A. Hatcher, Algebraic Topology, Cambridge University Press, 2001.
- [3] M. Manetti, *Topology*, Unitext 91, 2015.
- [4] J. Munkres, *Topology*, Prentice Hall, 2000.
- [5] H. Queffélec, *Topologie*, Dunod, 2012.
- [6] T. Tom Dieck, Algebraic Topology, EMS Textbk. Math., 2008.
- [7] J. Vick, *Homology Theory*, Grad. Texts in Math. 145, 1994.

# Index

Adherence Value, 8 Adherent, 6 Basepoint, 31 Basis, 4 Boundary, 5 Chain Singular, 44 Closed, 3, 23 Closure, 6 Compact, 15 Locally, 18 Component Connected, 21 Path, 22 Connected, 19 Locally, 21 Path, 22 Path, 20 Simply, 31 Subset, 19 Continuous, 9 Covered Evenly, 33 Covering, 15 Map, 33 Space, 33 Deformation Retract, 40 Retraction, 40 Dense, 6 Diameter, 24 Distance, 24 Extremity, 20 Filter, 7

Filter Base, 7 Group Fundamental, 31 Homeomorphism, 10 Homomorphism Induced, 32 Homotopic, 40 Path, 29 Homotopy, 40 Equivalent, 41 Inverse, 41 Path, 29 Interior, 5 Lifting, 34 Correspondence, 37 Limit, 7 Loop, 31 Metric, 23 Neighborhood, 4 Fundamental System, 5 Nulhomotopic, 40 Open, 3, 23 Ball, 23 Operator Boundary, 44 Face, 44 Origin, 20 Path, 20 Retract, 40 Retraction, 40 Section, 33 Separated, 6

Sequence Cauchy, 26 Simplex, 43 Singular, 44 Standard, 44 Slice, 33 Space Metric, 23 Complete, 26 Topological, 3 Subpace Metric, 23 Subspace Topological, 11 Topological Space Product, 13 Quotient, 14 Topology, 3 Discrete, 3 Finite Complement, 3 Generated, 4 Induced, 11 Product, 13 Quotient, 14 Trivial, 3

Vertex, 43