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Part I

General Topology






Chapter 1

Topological Spaces

1.1 Topological Spaces

Definition 1.1. One calls topological space a set X equipped with a family % of subsets of X, called
the open sets of X, satisfying the following conditions:

(i) the subsets @ and X of X are open,
(ii) every union of open subsets of X is open,
(iif) every finite intersection of open subsets of X is open.
One says that %/ defines a topology on X.

Example. Consider a set X. The collection of all subsets of X is a topology on X, and is called the
discrete topology on X. The collection consisting of X and & is also a topology, and is called the
trivial topology on X.

Example. Consider a set X. Let % be the collection of all subsets A of X such that X \ A is either
finite or is X. Then, % is a topology called the finite complement topology on X. Both X and &
are in %y, since X \ X = @ is finite and X \ @ = X. If {A;};cs is a family of nonempty elements of

U, since X \ | JA; =[)(X \ A;) is finite, then |_JA; € %. In case I is finite, X \ [ A; = J(X \ A)) is
iel iel iel iel iel
consequently finite, then ﬂA,- € U.
iel

Definition 1.2. Let X be a topological space, and A C X. One says that A is closed if X \ A is open.
Proposition 1.3. Let X be a topological space:

(i) the subsets & and X of X are closed,

(ii) every intersection of closed subsets of X is closed,

(iii) every finite union of closed subsets of X is closed.

Proof. The subsets @ and X are evidently closed by passage to complements. Let % a family of

closed subsets of X. Since X \ ﬂ B= U (X' \B) and X \ B is open, then X \ ﬂ B is open and ﬂ B
Be® Be? Be? Be%
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is consequently closed. If the family % is finite, since X \ U B= ﬂ (X \B) and ﬂ (X \ B) is open,
Be? Be? Be?
then U B is closed. O
Be¥

Definition 1.4. If X is a set, a basis for a topology on X is a collection & of subsets of X such that
(i) for each x € X, there exists an element B € Z containing x,

(ii) if x belongs to the intersection of two elements By, B, € 4, then there exists B € # such that
x€Band BC B;NB;.

If & satisfies both conditions, then one defines the topology generated by # as follows: A subset U
of X is said to be open in X if, for each x € U, there exists B € 4 such that x € Band BC U.

Proposition 1.5. Let X be a set, and % a basis for a topology % on X. Then, % equals the collection
formed by all unions of elements in .

Proof. As 7% is a topology, any union of elements in % clearly belongs to %/. Conversely, given
U e %, for each x € U, there exists B, € % such that x € B, and B, C U as 4% is a basis. So

U B, C U, and we also have U C U B, since U B, contains every element of U. L]
xeU xeU xeU

Proposition 1.6. Let X be a set equipped with a topology % . Suppose that € is a collection of open
sets such that, for each U € % and each x € U, there exists C € € such that x € C and C C U. Then,
€ is a basis for % .

Proof. We first prove that % is a basis. For the first condition, given x € X, since X € %, then there
exists C € % such that x € C and C C %. For the second condition, let x € C; NC, where C;,C; € %.
Since C; and C; are open, so is C; NCs, then there exists C € € such that x € C and C C C; N C;.

We now prove that the topology .7 generated by € is . If U € % and x € U, there exists C € € such
that x € C and C C U, and consequently U € .7 by definition. Conversely, if T € .7, then T equals a
union of elements in ¢ from Proposition[I.5] As ¢’ C % and % is a topology, then T € % . O

1.2 Neighborhoods

Definition 1.7. Let X be a topological space, and x € X. A subset V of X is called a neighborhood
of x in X if there exists an open subset A of X suchthatx€AandA C V.

Proposition 1.8. Let X be a topological space, and x € X.
(i) IfV and V' are neighborhoods of x, then VNV’ is a neighborhood of x.
(ii) IfV is a neighborhood of x, and W a subset such that V.C W, then W is a neighborhood of x.

Proof. There exists open subsets U,U’ containing x such that U CV and U’ CV'. So, UNU’ is an
open subset of X containing x with the property UNU' CV NV If V C W, then U C W, and W is
obviously a neighborhood of x. O

Proposition 1.9. Let X be a topological space, and A C X. These conditions are equivalent:

(i) A is open,
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(ii) A is a neighborhood of each of its points.

Proof. (i) = (ii) : For a point x of A, we obviously have x € A C A, so A is a neighborhood of x.

(ii) = (i) : For every x € A, there exists an open subset A, of X containing x such that that A, C A.
Then, the union U A, is open, and is included in A. Since each point of A is contained in U Ay, then
XCA XEA
AC U A,. Thus A = U A,, and A is consequently open. O
X€A X€A

Definition 1.10. Let X be a topological space, and x € X. One calls fundamental system of neigh-
borhoods of x any family {V;};c; of neighborhoods of x such that every neighborhood of x contains
one of the V.

Example. Let X be a topological space, and x € X. The set of all open subsets of X containing x is a
fundamental system of neighborhoods of x.

1.3 Interior

Definition 1.11. Let X be a topological space, A C X, and x € X. The point x is interior to A if A is a
neighborhood of x in X. The set of all points interior to A is called the interior of A and denoted A°.

Proposition 1.12. Let X be a topological space, and A a subset of X. Then A° is the largest open set
of X contained in A.

Proof. Let U be an open subset of X contained in A. If x € U, then A is neighborhood of x, therefore
x € A°, and consequently U C A°. So, every open subset contained in A is included in A°.

Now, if x € A°, there exists an open subset B such that x € B and B C A. Then B C A° by the first part
of the proof, thus A° is a neighborhood of x. From Proposition|1.9} we deduce that A° is open. O

Proposition 1.13. Let X be a topological space, and A C X. These conditions are equivalent:
(i) A is open,
(ii) A=A°.
Proof. (i) = (ii) : If A is open, then A = A° from Proposition [1.12}
(if) = (i) : If A = A°, then A is open since A° is open. O
Proposition 1.14. Let X be a topological space, and A,B C X. Then (ANB)° = A°NB°.

Proof. Ttis clear that (ANB)° C A° and (ANB)° C B°, hence (ANB)° C A°NB°.
One has A° C A and B° C B, therefore A° N B° C ANB. Since A° N B° is open, then A°NB° C (ANB)°
from Proposition[I.12] O

Definition 1.15. Let X be a topological space, and A C X. The boundary of A is the closed set
JA =X\ (A°U(X\A)°).
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1.4 Closure

Definition 1.16. Let X be a topological space, A C X, and x € X. One says that x is adherent to A if
every neighborhood of x in X intersects A. The set of all points adherent to A is called the closure of
A and denoted A.

Proposition 1.17. Let X be a topological space, and A C X. Then A =X\ (X \A)°.

Proof. Take a point x € X. We have x ¢ A if and only if x has a neighborhood disjoint from A if and
only if x € (X \A)°. O

Proposition 1.18. Let X be a topological space, and A,B C X.
(i) A is the smallest closed subset of X containing A.
(ii) Ais closed if and only if A = A.
(iiiy) AUB=AUB.
Proof. (i) : The interior (X \ A)° is the largest open set contained in X \ A. Therefore its complement

A is closed and contains A. If B is a closed subset of X containing A, then X \ B C (X \A)° = X \ 4,
and A C B.

(ii) : As A is the smallest closed subset of X containing A, then A is closed if and only if A = A.

(iii) : From Proposition[1.17} we have AUB = X \ (X \ (AUB))" =X\ (X \A) N (X \B))". Using

Proposition|1.14, then AUB =X \ (X \A)°N(X\B)°) = (X\ (X\A)°)U(X\(X\B)°) =AUB. 0O

Definition 1.19. Let X be a topological space, and A C X. One says A is dense if A = X.
Proposition 1.20. Let X be a topological space, and A C X. These conditions are equivalent:
(i) A is dense,
(ii) (X\A)° =g,
(iii) every nonempty open subset of X intersects A.

Proof. (i) = (ii) : Since X \ (X \A)° = A =X, then (X \A)° = @.
(if) = (iii) : Let U be an open subset that does not intersect A. Therefore U C (X \A)° = @.

c
A=X

(iif) = (i) : Since every neighborhood of every point of X intersects A, then

1.5 Separated Topological Spaces

Definition 1.21. A topological space X is said to be separated if any two distinct points of X admit
disjoint neighborhoods.

Proposition 1.22. Let X be a separated topological space, and x € X. Then {x} is closed.

Proof. Take a point y € X \ {x}. There exist neighborhoods V and W of x and y respectively that
are disjoint. In particular, W C X \ {x}, hence X \ {x} is neighborhood of y. Thus X \ {x} is a
neighborhood of each of its points. We deduce from Proposition [1.9|that X \ {x} is open. O



Chapter 2

Limit and Continuity

2.1 Limits

Definition 2.1. A filter on asetX is a set % formed by nonempty subsets of X satisfying the following
conditions:

(i) ifAc.Z andBe #,then ANB € .7,
(ii) if A€ .7 and if A’ is a subset of X containing A, then A’ € .Z.

Definition 2.2. A filter base on a set X is a set % of nonempty subsets of X such that, if A € % and
B € A, there exists C € 4 such that C C ANB.

Example. Let X be a topological space, and xo € X. The set ¥ formed by the neighborhoods of xg
is a filter on X. A fundamental system of neighborhoods of xg is a filter base on X. Let ¥ C X, and
assume xo €Y. Theset {Y NV |V € ¥ }isafilteronY.

Example. For x € R, the set of intervals {(x —&,x+€) }eeR* is a filter base on R.
+

Definition 2.3. Let X be a set equipped with a filter base 4, Y a topological space, f: X — Y a
function, and / a point of Y. One says that f tends to / along 4 if, for every neighborhood V of [ in ¥,
there exists B € 4 such that f(B) C V.

If X is a topological space, and 4 the filter formed by the neighborhoods of a point xy of X, one says
that / is the limit of f along the neighborhood filter of xy, and writes xlgilo flx)=1.

Proposition 2.4. Let X,Y be topological spaces, f:X — Y a function, xo € X, l €Y, {Vi}ic1 a
fundamental system of neighborhoods of xo in X, and {W;} je; a fundamental system of neighborhoods
oflinY. The following conditions are equivalent:

(i) tim f(x) =1,

X—X0
(ii) forevery j € J, there exists i € I such that f(V;) CW,.

Proof. (i) = (ii) : For every j € J, there exists a neighborhood V of xo such that f(V) C W;. By
definition, there exists i € I such that V; C V. Therefore f(V;) C W;.

(i) = (i) : Let W be a neighborhood of . There exists j € J such that W; C W. Then, there exists i € /
such that f(V;) C W;, and consequently f(V;) CW. O

7
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Proposition 2.5. Let X be a set equipped with a filter base 9, Y a separated topological space, and
f: X =Y afunction. If f admits a limit along 9B, this limit is unique.

Proof. Let[,l’ be distinct limits of f along Z. Since Y is separated, there exist disjoint neighborhoods
V and V' of [ and [’ respectively in Y. There exist B,B’ € % such that f(B) CV and f(B") CV'. By
definition, there exists B” € % such that B C BNB'. Then f(B") C f(B)N f(B') CV NV’ Since B”
is nonempty, then f(B") # @, and consequently V NV’ = & which is absurd. O

Proposition 2.6. Let X be a set equipped with a filter base B, Y a topological space, f:X —Y a
function, andl € Y. Let X' € B, and f' the restriction of f to X'. The sets BNX', where B € %, form
a filter base %' on X'. The following conditions are equivalent:

(i) f tends tol along %,
(ii) f tends to | along A’

Proof. (i) = (ii) : Let V be a neighborhood of /. There exists B € % such that f(B) C V. Hence
f/(BNX')CV. As BNX'%', then f’ tends to [ along A’

(ii) = (i) : Let V be a neighborhood of [. There exists B’ € %’ such that f(B") C V. But B has
the form BN X' with B € 4. Since X' € 4, there exists B’ € % such that B” C BNX’'. Then,
f(B") C f/(B") CV,and f consequently tends to / along 4. O

2.2 Adherence Values

Definition 2.7. Let X be a set equipped with a filter base 4, Y a topological space, f: X — Y a
function, and / a point of Y. One says that / is an adherence value of f along Z if, for every
neighborhood V of / and for every B € 4, f(B) intersects V.

Example. Consider the function f: R — R, x+ {x}. Then, every real number in [0, 1) is an adherence
value of f along the filter base {(a,-+)}

acRy”
Proposition 2.8. Let X be a set equipped with a filter base B, Y a separated topological space,

f:X =Y afunction, and l a point of Y. If f tends to | along 9B, then | is the unique adherence value
of f along A.

Proof. Let V be a neighborhood of /, and B € #. There exists B’ € % such that f(B") C V. Then
BNB' # @, hence f(BNB') # &, and f(BNB') C f(B)NV. Therefore f(B) intersects V, meaning
that / is an adherence value of f along %.

Let /’ be an adherence value of f along %, assume [’ # [. There exist neighborhoods V and V' of [ and
I’ respectively that are disjoint. There exists B € Z such that f(B) C V. Then f(B) NV’ contradicting
the fact that ’ is an adherence value. O

Proposition 2.9. Let X be a set equipped with a filter base 9B, Y a topological space, and f:X —Y
a function. The set formed by the adherence values of f along A is ﬂ f(B).
Be#

Proof. Let [ be an adherence value of f along %, and B € %. Every neighborhood of [ intersects
f(B). Then! € f(B),andl € () f(B).

Be%#
Let /" € (] f(B), V' be a neighborhood of /', and take B € 4. Since I’ € f(B), then f(B) intersects
Be%#
V’, and I’ is an adherence value of f. ]
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2.3 Continuity

Definition 2.10. Let X,Y be topological spaces, f : X — Y a function, and xo € X. One says that f is
continuous at xo if lim f(x) = f(xp). In other words, for every neighborhood V of f(x), there exists
X—X0

a neighborhood U of xj such that f(U) C V.

Proposition 2.11. Let X,Y,Z be topological spaces, f : X —Y and g : Y — Z functions, and xo € X.
If f is continuous at xo, and g at f(xo), then go f is continuous at x.

Proof. Let W be a neighborhood of g(f(xo)) in Z. There exists a neighborhood V of f(xo) in Y such
that g(V) C W. Moreover, there exists a neighborhood U of xo in X such that f(U) C V. Then, U is
neighborhood of U such that go f(U) C g(V) CW. O

Definition 2.12. Let X,Y be topological spaces, and f : X — Y a function. One says that f is con-
tinuous on X if f is continuous at every point of X. The set of continuous functions from X into Y is
denoted ¥ (X,Y).

Example. Let A,B C R", and f arational function such that f is defined on A and f(A) = B. Consider
the basis B4 = {ANB(x,r) | x €A, reR }resp. g ={BNB(x,r) | x€ B, r € R} } for a topology
on A resp. B, where B(x, r) is the open n-ball {y € R" | [lx—y||> < r}. Take x € A, and a neighborhood
V of f(xo). There exists an open ball B(xo, r) such that ANB(xo,r) € f~' (V). So f(ANB(xo,r)) CV,
and f : A — B is consequently continuous.

Proposition 2.13. Let X.,Y,Z be topological spaces, f € € (X,Y), and g € €(Y,Z). Then, we have
gofe¥€(X,2).

Proof. Use Proposition for the continuity of go f on every point of X. O

Proposition 2.14. Let X,Y be topological spaces, and f : X — Y a function. The following conditions
are equivalent:

(i) f is continuous,
(i)
)

(iii

f~Y(B) is an open subset of X if B is an open subset of Y,
f~Y(B) is a closed subset of X if B is a closed subset of Y,

(iv) for every subset A of X, f(A) C f(A).

Proof. (i) = (iv) : Let A C X and x( € A. Take a neighborhood W of f(xo) in Y. Since f is continuous
at xo, there exists a neighborhood V of xp in X such that f(V) C W. The fact xo € A implies VNA # @.

As f(VNA) CW N f(A), one sees that W f(A) # @. Therefore f(xo) € f(A), and f(A) C f(A).

(iv) = (iii) : Let B be a closed subset of ¥, and A € f~!(B). Then f(A) C B, and f(A) C B from
Proposition (). If x € A, then f(x) € f(A) as f is continuous. Therefore f(x) € B and so x € A.
Thus A = A.

(iii) = (ii) : Let B be an open subset of Y. Then Y \ B is closed, and consequently f~! (¥ \ B) is closed.
But f~1(Y\B) =X\ f'(B), then f~!(B) is open.
(ii) = (i) : Let xp € X, and W a neighborhood of f(x¢) in Y. There exists an open subset B of ¥ such

that f(xo) € BC W. If A= f~!(B), then A is open, and A is a neighborhood of x; as xy € A. Since
f(A) C B C W, then f is continuous at x. O
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2.4 Homeomorphisms

Proposition 2.15. Ler XY be topological spaces, and f : X — Y a bijective function. The following
conditions are equivalent:

(i) fand f~" are a continuous,
(ii) a subset A of X is open if and only if f(A) is openinY,
(iii) a subset A of X is closed if and only if f(A) is closed in Y.

Proof. (i) = (ii) : Using Proposition we deduce from the continuity of f that if f(A) is open
then A is open, and from the continuity of f~! that if A is open then f(A) is open. One analogously
proves (i) = (iii).

(i) = (i) : Using Proposition[2.14] “if f(A) is open then A is open” implies that f is continuous, and
“if A is open then f(A) is open” implies that f~! is continuous. One analogously gets (iii) = (i). O

Definition 2.16. Let X,Y be topological spaces, and f a function from X into Y. One says that f is
a homeomorphism if f is bijective, continuous, and f~! is continuous. In that case, one says that X
and Y are homeomorphic.

Example. The n-dimensional sphere is the set S" := {(xl,...,an) € R+l ‘ x% 4+ +x,%+1 = 1}.
Let a = (0,...,0,1) € S", and identify R" with {(xi,...,x,41) € R""! ‘ Xpr1 = 0}. We are going
to define a homeomorphism from S"\ {a} onto R". Take a point x = (x1,...,X,11) € S"\ {a}. The
line joining @ and x is D = {(/lxl, oy A, T+ A (X — 1)) e Rl ‘ Ace R}. This line touches R”"

when 1+ A (x,11 —1) =0, that is when A = . Thus DN R" reduces to the point f(x) with
—Xn+1
coordinates !
/ X1
xl = 5
I —xpq1

X2 / Xn /
- e =T X =0, @.1)
—Xn+1 —Xn+1

o~

X

We have thus defined a function f : S\ {a} — R". We now prove that, given x' = (x},...,x},0),

R
there exists one and only one point x = (x,...,%,+1) in S"\ {a} such that f(x) = x’. The solution of
Equation [2.1] yields the conditions

xi =x{(1—x,41) for 1 <i<n, and x§2(1 —Xpp1)? a2 =1

n
i=1
After dividing out 1 — x,,. 1, we obtain (x’12 4 +x;2)(1 —Xp+1) — 1 —x,41 = 0, which gives

2x 2x!
- . and X =5 = (22)
X xm 41 X741 X x4 1

Thus f:S"\ {a} — R" is a bijection. Let Bgn (o) = {S"\ {a} NB(x,r) | x € S"\ {a}, r € R? } resp.
P = {R"NB(x,r) | x € R", r € RY. } be a basis for a topology on S"\ {a} resp. R", where B(x, r)
is the open n + 1-ball {y € Rl ‘ Ilx—yll2 < r}. We see in Equation resp. Equation that f
resp. f~! is a rational function, and is consequently continuous. Hence f is a homeomorphism called
stereographic projection of S"\ {a} onto R”".

10



Chapter 3

Construction of Topological Spaces

3.1 Topological Subspaces
Proposition 3.1. Let X be a topological space, % a topology on X, and Y a subset of X. Then
v ={UNY |U €} isatopologyon?Y.

Proof. (i):As @, X €%, then@=@NY €V andY =XNY € V.
(ii) : Let {V;}cs be a family of subsets belonging to #". For every i € I, there exists U; € % such that
Vi=U;NY. Therefore | JV; = Jwiny) = (Jui) ny e 7.

icl iel icl
(iii) : Tf T s finite, then (Vi = ((U;NY) = (ﬂU,) Ny ev. O
iel iel iel

Definition 3.2. Let X be a topological space, % a topology on X, and Y a subset of X. The set
V¥ ={UNY |U € %} is called the topology induced on Y by the given topology of X. Equipped
with this topology, Y is called a topological subspace of X.

1 1
Example. Consider R with the usual topology. As {n} =ZnN (n— 71 + 5), every point set {n} of

Z is therefore open. Every subset of Z is the union of point sets, then is open. Thus the topological
subspace Z of R is discrete.

Proposition 3.3. Let X be a topological space, Y a subspace of X, and A a subset of Y. The following
conditions are equivalent:

(i) Aisclosedin?,
(ii) A is the intersection with Y of a closed subset of X.

Proof. (i) = (ii) : The subset Y \ A is open in Y. Therefore there exists an open subset U of X such
that Y \A=UNY. ThusA = (X \U)NY, and since X \ U is closed, we get the result.

(if) = (i) : Suppose A =V NY where V is closed subset of X. Then Y \A = (X \V)NY. Since X \V
isopenin X, then Y \ A is openinY, and A is closed in Y. O

Proposition 3.4. Let X be a topological space, Y a subspace of X, and x € Y. For a subset A of Y, the
following conditions are equivalent:

(i) A is a neighborhood of x in'Y,

11
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(ii) A is the intersection with Y of a neighborhood of x in X.

Proof. (i) = (ii) : There exists an open subset B of Y such that x € B C A. Then there exists an open
subset U of X such that B=UNY. Letting V = U UA, we have x € V, thus V is a neighborhood of x
in X. Besides, YNV = (YNU)U(YNA) =BUA =A.

(ii) = (i) : Suppose A =Y NV where V is a neighborhood of x in X. There exists an open subset U
of X suchthat xc U CV. Thenx e YNU CY CV =A, and since Y NU is open in Y, thus A is
neighborhood of x in Y. O

Proposition 3.5. Let X be a topological space, and Y C X. If X is separated, then Y is separated.

Proof. Take two distinct points x,y of Y. There exist disjoint neighborhoods U and V of x and y
respectively in X. We deduce from Proposition [3.4]that U NY and V NY are neighborhoods of x and
y respectively in Y, and they are disjoint. 0

Proposition 3.6. Let X,Y,Z be topological spaces such that X DY D Z. Assume % is a topology
on X, V the topology induced by % on'Y, and W the topology induced by ¥ on Z. Then W is the
topology induced by % on Z.

Proof. Let #' be the topology induced by % on Z.

ForW € # , there existV € ¥ suchthat W =V NZ,and U € % suchthatV =UNY. ThenW =UNZ,
and consequently W € #'.

For W € W', there exists U € % suchthat W =UNZ. IfV=UNY,thenV € ¥ and W =V NZ.
Therefore W € #'. ]

Proposition 3.7. Let X be a set equipped with a filter base %, Y a topological space, Y' a subspace
of Y, f:X =Y afunction, and | a point of Y'. The following conditions are equivalent:

(i) f tendstol along A relative toY',
(ii) f tends tol along A relative to'Y.

Proof. (i) = (ii) : Let V be a neighborhood of / in Y. We know from Proposition [3.4] that V N Y’
is a neighborhood of 7 in Y’. There exists B € % such that f(B) CVNY'. Thus f(B) CV, and f
consequently tends to / along 4 relative to Y.

(ii) = (i) : Let V’ be a neighborhood of I’ in ¥’. From Proposition [3.4] there exists a neighborhood V
of /in Y such that VNY’ = V’. Besides, there exists B € £ such that f(B) C V. Since f(X) CY’, one
has f(B) CVNY’ which is V'. Thus f tends to [ along Z relative to Y. O

Corollary 3.8. Let X,Y be topological spaces, Y' a subspace of Y, and f : X — Y’ a function. The
following conditions are equivalent:

(i) f is continuous,
(ii) f, regarded as a function from X into Y, is continuous.

Proof. For every xo € X, the condition lim f(x) = f(xp) has the same meaning, according to Propo-
X—rX0

sition [3.7) for the neighborhood filter of xo, whether one considers f to have valuesin Y’ orin Y. [J
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3.2 Products of Topological Spaces

Proposition 3.9. Let X1,...,X, be topological spaces equipped with topologies U\, ..., %, respec-
tively. The set % formed by any union of elements in %) X - -+ X Uy, is a topology on X =X| X - - x X),.
Proof. (i):Wehave X =X X+ XX, E U XX Upand T =S XXy X ++- X Xy € UL X =+ X Up.
(ii) : From its definition, any union of elements in %/ is a union of elements in % X --- X %,.

(iii) : Take A,B € %. We have A = | JAq and B = | J Bg with Ag,Bg € % X -+ X %, Then

acl BeJ
ANB=|JAuNBg. Setting Ay =A; X - x A, and Bg = By X --- X B,, we get
acl
BeJ

AgNBg = (A1NBy) X+ X (AyNBy,) € U X -+ X Up.
O

Definition 3.10. Let X;,...,X, be topological spaces equipped with topologies %1,...,%, respec-
tively. The topology % on X = X x --- x X,, formed by any union of elements in % X --- X %, is
called the product topology of the given topologies on X, ...,X,. Equipped with this topology, X is
called the product topological space of the topological spaces Xi,...,X,.

Proposition 3.11. Let X = X| X - -- X X,, be a product of topological spaces, and x = (x,...,x,) € X.
The sets of the form V| X --- X'V, where V; is a neighborhood of x; in X;, constitute a fundamental
system of neighborhoods of x in X.

Proof. For i€ {1,...,n}, let V; be a neighborhood of x; in X;. There exists an open subset A; of X;
such that x; € A; CV;.. Thenx €A} X --- XA, CVy x---xV,. AsA| xX--- XA, is open in X, thus
Vi x -+ x 'V, is a neighborhood of x in X.

Let V be a neighborhood of x in X. There exists an open subset A of X such that x € A C V. By
definition of the product topology, there exists an open subset A; such thatx; €A; and Ay X --- XA, CA.
Thus A; is a neighborhood of x; and A} x --- XA, C V. O

Proposition 3.12. Let X = X| X --- X X, be a product of topological spaces. If each X; is separated,
then X is separated.

Proof. Letx = (xy,...,x,) and y = (y1,...,y,) be two distinct points of X. One has x; # y; for at least
one i € {1,...,n}. If x; # y; for example, there exist disjoint neighborhoods U and V of x; and y,
respectively in X;. Then U x Xp X --- X X, and V X X; X -+ X X, are disjoint neighborhoods of x and
y respectively in X. O

Proposition 3.13. Let X be a set equipped with a filter base 2, Y =Y| X --- x Y, a product of topo-
logical spaces, and | = (11,...,l,) € Y. Consider a function f : X — Y, that is, having the form
X (f1 (x),...,fn(x)), where f; : X — Y; is also a function for i € {1,...,n}. Then, the following
conditions are equivalent:

(i) f tendstol along 2,
(i) fitends to l; along A.

13
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Proof. (i) = (ii) : Let us show, for example, that f; tends to /; along %. If V; is a neighborhood
of [, then V| x ¥, x --- X Y;, is a neighborhood of [ in Y. Therefore, there exists B € % such that
f(B) CVy xY,x---xY,. Thus fj(B) CV, and f; consequently tends to /; along %.

(if) = (i) : Let V be a neighborhood of / in Y. We know from Proposition that there exist
neighborhoods Vi,...,V, of [1,... [, respectively in Y1, ..., Y, such that V| x --- xV,, C V. Then, there
exist By,...,B, € % such that fi(B1) C Vi,..., fu(By) C V,. Moreover, there exists B € 4 such that
BC BiN---NBy,. Then, f(B) C fi(B1) X+ X fu(By) CV; x---xV, CV,and f consequently tends
to [ along A. O

Proposition 3.14. Let X be a topological space, andY =Y, X - -- XY, a product of topological spaces.
Consider a function f : X — Y, that is, having the form x — (f1 (x),... ,fn(x)), where f;: X — Y is
also a function for i € {1,...,n}. The following conditions are equivalent:

(i) f is continuous,

(ii) fi,...,fn are continuous.
Proof. For every xo € X, the conditions 1i_>m f(x) = f(xo) and li_>m fi(x) = filxo), fori € {1,...,n},
X—X0 X—X0
are equivalent by Proposition [3.13|using the neighborhood filter of xq. O

3.3 Quotient Spaces

Proposition 3.15. Let X be a topological space with topology % , % an equivalence relation on X, and
¢ the canonical mapping from X onto X /| %. Then the set defined by V = {A CX/% } c (A e ?/}
a topology on X | .

Proof. The set @ and X /% are open in X /% since ¢! (@) = @ and ¢~ ! (X /%) = X. The two other
conditions follow, for a set {A, };c; included in ¥/, from the equations

¢! (UA,-) = Uc‘l(Ai) and ¢! (ﬁA,) = ﬁc‘l(A,-).
icl i=1 i=1

i€l
O

Definition 3.16. Let X be a topological space with topology %, % an equivalence relation on X, and
¢ the canonical mapping from X onto X /Z. The topology {A C X /% ‘ cYNA) e WU} on X/ is
called the quotient topology of the topology of X by #Z. Equipped with this topology, X /Z is called
the quotient space of X by Z#.

Proposition 3.17. Let X be a topological space, # an equivalence relation on X, c¢ the canonical
mapping from X onto X /%, Y a topological space, and f : X /% — Y a function. The following
conditions are equivalent:

(i) f is continuous on X | %,

(ii) the function foc:X —Y is continuous.

Proof. (i) = (ii) : The mapping c is continuous as, if A is open in X /2, then ¢~!(A) is open in X.
Since f is also continuous, then f o c is continuous.

(ii) = (i) : Let B be an open subset of Y. Then ¢~ ' (f~!(B)) = (foc)~'(B) is open in X. Therefore
f~1(B) is open in X /% by the definition of c. Thus f is continuous from Propositionm O
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Chapter 4

Compact Spaces

4.1 Compact Spaces

Definition 4.1. Let X be a set, and A a subset of X. A family . of subsets included in X is a covering
of AifAC (J U.

UeF

Definition 4.2. A topological space X is compact if, for any family & of open subsets of X covering
X, one can extract from & a finite subfamily that again covers X. By passage to complements, this
definition is equivalent, for any family % of closed subsets of X having empty intersection, to the
existence of a finite subfamily of % having empty intersection.

Proposition 4.3. Let X be a topological space, and A a subspace of X. The following conditions are
equivalent:

(i) A is compact,

(i) if a family of open subsets of X covers A, one can extract from it a finite subfamily that again
covers A.

Proof. (i) = (ii) : Let {U;}ics be a family of open subsets of X such that A C UUi' Every U;NA
icl
is open in A, and the family {U; N A};c; covers A, so there exists a finite subset J of I such that
A= U (U;jNA). The subfamily {U,} je; consequently covers A.
jeJ
(ii) = (i) : Let {V;};es be a family of open sets of A covering A. For every i € I, there exists an open
subset U; of X such that V; = U;NA. Then {U;}c; covers A, there consequently exists a finite subset
J of I such that {U;} jc; covers A. Therefore U Vi=A. O
jeJ

Theorem 4.4 (Borel-Lebesgue). Consider the space R equipped with the usual topology, and let
a,b € Rwith a < b. Then the interval [a,b] is compact.

Proof. Let {U,;}ic; be a family of open subsets of R covering [a,b], and A be the set of x € [a,b]
such that [a,x] is covered by a finite subfamily of {U;}ic;. The set A is nonempty since a € A. It is
contained in [a,b], and therefore has a supremum m in [a,b]. There exists j € I such that m € U;.
Since U is open in R, there exists € > 0 such that [m—e,m+¢] C Uj. As m is the supremum of A,
there exists x € A such that m — & <x < m. Then [a,x] is covered by a finite subfamily {Uy }xck, and
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with [x,m + €] C Uj, we get [a,m+ €] covered by the finite subfamily {Uy }rcx U{U,}. One sees that
m+ € € [a,b] contradicts the fact that m is the supremum in [a,b]. Hence m = b, and [a, b] is covered
by a finite subfamily of {U;};c;. We deduce the compactness of [a,b] from Proposition O

4.2 Properties of Compact Spaces

Proposition 4.5. Let X be a set equipped with a filter base %, Y a compact space, and f : X — Y a
function. Then f admits at least one adherence value along A.

Proof. Consider the family { f(B)} < Of closed subsets of ¥, and let A = ﬂ f(B). If A = &, there
Be#

exist By, ..., B, € # such that f(B;)N---N f(B,) = & as Y is compact. Now, there exists B € £ such

that BC By N---NB,, whence f(B) C f(B1)N---N f(By,), and consequently f(B;)N---Nf(By) # 2.

This contradiction proves that A # &, so we get the result by using Proposition[2.9] O

Proposition 4.6. Let X be a set equipped with a filter base %, Y a compact space, f: X —Y a
function, and A the set of adherence values of f along 9. Take an open subset U of Y containing A.
Then, there exists B € 2 such that f(B) C U.

Proof. One has (Y \U)NA = &, meaning that (Y \U)N ﬂ f(B) = @. Since Y is compact, there

Be%#
exist By,...,B, € Zsuchthat (Y\U)Nf(By)N---Nf(B,) = @. Furthermore, there exist B € # such
that BC By N---NB,. Then (Y \U)N f(B) = @, implying f(B) CU. O

Corollary 4.7. Let X be a set equipped with a filter base B, Y a compact space, and f : X —Y a
Sfunction. If f admits only one adherence value | along A, then f tends to | along A.

Proof. From Proposition for any neighborhood V of /, there exists B € # such that f(B) CV. [
Proposition 4.8. Let X be a compact space, and A a closed subspace of X. Then A is compact.

Proof. Let {A;}c; be a family of closed subsets of A with empty intersection. We know from Propo-
sition [3.3that each A; is the intersection of A with a closed subset of X then is closed in X. Since X is
compact, there exists a finite subfamily {A;} jc; with empty intersection. O

Proposition 4.9. Let X be a separated space, and A a compact subspace of X. Then A is closed in X.

Proof. Take x € X \ A. For every y € A, there exist open neighborhoods Uy, V;, of x,y respectively

in X that are disjoint. We have A C U Vy, and since A is compact, there exist yi,...,y, € A such
yeA

that A C V), U---UV,, . The set U, N---NU,, is an open neighborhood of x contained in X \ A. It

follows that X \ A is neighborhood of each of its points, and is consequently open from Proposition

Therefore A is closed in X. O

Proposition 4.10. Let X be a separated space.
(i) If A, B are compact subsets of X, then AUB is compact.

(i) If {Ai}ier is a nonempty family of compact subsets of X, then ﬂA,- is compact.
iel
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Proof. (i) : Let {U;};c; be a covering of AU B by open subsets of X. There exist finite subsets J;,.J, of
I such that {U;} je;, covers A and {U,} je, covers B. Then {U;}jcj,us, covers AUB, and we deduce
from Proposition 4.3|that A U B is compact.

(i) : We know from Proposition that each A; is closed in X. Therefore ﬂA,- is closed in X, and
iel
consequently in each A;. Since each A; is compact, then ﬂA,- is compact by Proposition 0
i€l
Proposition 4.11. Let X be a separated compact space. Every point of X has a fundamental system
of compact neighborhoods.

Proof. Take a point xo and an open neighborhood A of xg in X. The sets {xo} and X \ A are disjoint

compact subsets of X. For every x € X \ A, there exist disjoint open subsets Uy, V, of X such that xy € Uy

and x € V. Since X \ A C U Vy, there exists x,...,x, € X \A such that X \A CV,, U---UV, . Then,
xeX\A

U=U,N---NUy, andV =V, U---UV,, are disjoint open subsets of X such thatxo € U and X\A C V.

Hence U is a compact neighborhood of xo. We have U C X \ V, therefore U C X \ V as X \ V is closed,

and consequently U C A. O

Proposition 4.12. Let X be a compact space, Y a topological space, and f : X — Y a continuous
function. Then f(X) is compact.

Proof. Let {U;}ics be a family of open subsets of ¥ covering f(X). Since f is continuous, then each

£~Y(U;) is an open subset of X from Proposition [2.14, Moreover, X = U f71(U)), then there exists

iel

a finite subset J of I such that X = U f1(U,). Hence {U;}e; covers f(X), and f(X) is therefore
jel

compact. O

Corollary 4.13. Let X be a compact space, Y a separated space, and f : X — Y a continuous bijective
function. Then f is a homeomorphism of X onto Y.

Proof. 1If A is a closed subset of X, then A is compact from Proposition therefore f(A) is compact
from Proposition 4.12] and consequently closed from Proposition We deduce from Proposi-

tion that f~! is continuous. O
Theorem 4.14. The product of a finite number of compact spaces is compact.

Proof. Tt suffices to show that if X and Y are compact, then X x Y is compact. Let {U; };c; be a covering
of X x Y with open subsets. For every m = (x,y) € X x Y, fix an open set U, such that m € U,,. By
Proposition there exist an open neighborhood V,,, of x in X and an open neighborhood W, of y
in Y such that V,, x W,, C U,,.

For a fixed xo € X, {xo} x ¥ is homeomorphic to Y. Indeed, the function y — (xp,y) of ¥ onto {xo} X ¥
is bijective. It is continuous from Y into X x Y by Proposition[3.14], therefore from Y into {xo} x ¥ by
Corollary Its inverse function is the composite of the canonical injection of {xp} x Y into X x Y,
which is continuous from Corollary [3.8] once again, and of the canonical projection of X x Y onto Y,
which is also continuous from Proposition[3.14} The set {xo} X Y is then compact.

The family of open subsets {Vi, X Wi }ue(x}xy i a covering of {xo} x Y, so there consequently
exist finite points my,...,m, € {xo} X Y such that {xo} XY C (Vyy, X Wy, ) U---U (V,y,, X W, ). The
intersection Ay, = V,,, N---NV,, is an open neighborhood of xy. For every (x,y) € Ay, X Y, there exists
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ke {1,...,n} such that (x,y) € V,,, X Wy, , hence A,, XY is covered by a finite subset of {U;}c;.

Now {A,, }x,ex forms a covering of X, from which one can extract a finite covering of open subsets
{Ax,-- Ay, }. Bach Ay, x Y, with j € {1,...,p}, is covered by a finite subset of {U;}cs, therefore
X x Y is covered by a finite subset of {U; }c;. O

4.3 Locally Compact Spaces

Definition 4.15. A topological space X is said to be locally compact if every point of X admits a
compact neighborhood.

Example. Consider the product topological space R", where R is equipped with the usual topology,
and take x = (xi,...,x,) € R". We know from the theorem of Borel-Lebesgue that, for every i €
{1,...,n}, [xi — 1,x; + 1] is a compact neighborhood of x; in R. Then, by Proposition and
Theorem[@.14] [x; — 1, x; + 1] x -+ X [x, — 1, x, + 1] is a compact neighborhood of x. The topological
space R" is therefore locally compact.

Proposition 4.16. Let X be a separated space. The following conditions are equivalent:
(i) X is locally compact,
(ii) every point of X admits a fundamental system of compact neighborhoods.

Proof. We obviously have (ii) = (i). We only prove (i) = (ii) : Let x € X and V be a compact
neighborhood of x. We know from Proposition that x admits in V a fundamental system {V;};c;
of compact neighborhoods. We deduce from Proposition that {V;};cs is a fundamental system of
compact neighborhoods of x in X. O

Proposition 4.17. Let X be a locally compact space, and Y a subspace of X.
(i) IfY is closed, then Y is locally compact.
(ii) If X is separated and Y is open, then Y is locally compact.

Proof. Letx €Y and V a compact neighborhood of x in X. Then V NY is a neighborhood of xin Y.
(i) : We know from Proposition [3.3|that V NY is closed in V, hence is compact by Proposition

(ii) : As 'Y is a neighborhood of x, we can suppose from Propositionﬂthat VCY,and thenV is a
compact neighborhood of xin Y. O

Proposition 4.18. Let X, ..., X, be locally compact spaces, and X = X1 X --- X X;,. Then X is locally
compact.

Proof. Take x = (x1,...,x,) € X. Forevery i € {1,...,n}, there exists a compact neighborhood V; of
x; in X;. Then V| x --- XV, is a neighborhood of x in X is compact by Theorem |4.14 O]
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Chapter 5

Connected Spaces

5.1 Connected Spaces

Definition 5.1. A topological space X is said to be connected if there does not exist a pair (A, B) of
disjoint nonempty open subsets of X such that X = AU B. By passage to complements, this definition
is equivalent to the nonexistence of a pair (A, B) of disjoint nonempty closed subsets of X such that
X = AUB. Itis also equivalent to the nonexistence of a subset of X, distinct from X and @, that is
both open and closed.

Proposition 5.2. The topological space R equipped with the usual topology is connected.

Proof. Let A be an open and closed subset of R, and assume A and R \ A nonempty. Taking x € R\ A,
one of the sets AN [x, +-o0) and A N (—oo, x| is nonempty. Suppose that B=A N [x, +o0) # &. Then B
is closed. Since it is bounded below, then it has a smallest element as its infimum b is adherent to B.
Besides, since B= AN (x, +o0), then B is also open. Hence B contains an interval (b — &, b+ €) with
€ > 0. That contradicts the fact that b is the smallest element of B. O

Definition 5.3. Let X be a topological space and ¥ C X. One says that Y is a connected subset of X
if the topological space Y is connected.

Example. The subspace Q of R is not connected. Take indeed an element x € R\ Q such as V2orT.
Then Q = ((—oo, x)N (@) U ((x, +oo) N Q) which are two disjoint open subsets of Q.

Proposition 5.4. Let X be a topological space, {A;}icr a family of connected subsets of X, and A the
set UA,-. If the A intersect pairwise, then A is connected.

icl
Proof. Suppose A is not connected. There exist nonempty subsets U,V C A open in A such that
V =A\U. Forevery i €I, UNA; and V NA; are both open and complementary in A;. Since A; is
connected, then U NA; = & or VNA; = . Let Iy and Iy be the set of i € I such that A; C U and
A; CV respectively. Then, U = U A;jand V = U A;. Therefore, there exist i, j € I, i # j, such that

iely iely
A; and A; are disjoint, which is a contradiction. O

Corollary 5.5. Let X be a topological space, and Ay, ...,A, connected subspaces of X such that
AiNAi 2 ifi€{l,...,n}. Then, A U---UA, is connected.

Proof. The proof is by induction. We suppose that A; U---UA,_ is connected. As A,_| NA, # &,
we deduce from Proposition[5.4]that A; U---UA, is connected. d
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Proposition 5.6. Let X be a topological space, A a connected subset of X, and B a subset of X such
that A C B C A. Then B is connected.

Proof. Suppose that B is the union of subsets U,V that are disjoint and open in B. There exist open
sets U’,V' in X such that U = BNU' and V = BNV’. The sets ANU and ANV are then open and
complementary in A. Since A is connected, we have for example ANU = @, then ANU’ = @, in other
words A C X \ U’. Since X \ U’ is closed, then A C X \U'. So BNU' = &, implying U = @. O

Proposition 5.7. Let X,Y be topological spaces and f a continuous function from X into Y. If X is
connected, then f(X) is connected.

Proof. If f(X) is not connected, it has nonempty open subsets U,V C f(X) that are complementary.
So f~H(U), f~1(V) C X are nonempty open subsets that are complementary, which is absurd. O

Proposition 5.8. Consider R equipped with the usual topology, and A C R. The following conditions
are equivalent:

(i) A is connected,
(ii) A is an interval.

Proof. We can assume that A is nonempty and not reduced to a point.

(ii) = (i) : If A is open, then A is homeomorphic to R, and consequently connected by Proposition|5.2}
If A is an arbitrary interval, then A° C A C A, and consequently connected by Proposition

(i) = (ii) : Suppose that A is not an interval. There exist a,b € A and xo € R\ A such that a < xo < b.
Then A is the union of the sets AN (—eo, x9) and A N (xg, +o0) which are open in A. Since A is
connected, AN (xp, +o0) for example is empty. Then x < xo for all x € A, which contradicts b € A. ]

Proposition 5.9. Let X be a connected topological space, f : X — R a continuous function, and
a,b € X. Then f takes on every value between f(a) and f(b).

Proof. The set f(X) is a connected subset of R by Proposition hence is an interval of R by
Proposition[5.8] This interval contains f(a) and f(b), hence all numbers between them. O

5.2 Connected Components

Proposition 5.10. Ler X be a topological space, and x € X. Among the connected subspaces of X
containing x, there exists one that is larger than all the others.

Proof. The union of all the connected subsets of X containing x is connected by Proposition [5.4] and
is obviously the largest of the connected subsets of X containing x. O

Definition 5.11. Let X be a topological space and x € X. The largest connected subset of X containing
x is called the connected component of x in X.

Example. The topological spaces X =R\ {0} and Y =R\ {0, 1} are not homeomorphic, since X has
the two connected components (—oo, 0), (0, +o0), while Y the has three (—eo, 0), (0, 1), (1, +o0).

Proposition 5.12. Let X be a topological space.

(i) Every connected component of X is closed in X.
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(ii) Two distinct connected components are disjoint.

Proof. (i) : If A is the connected component of x, then A, is connected by Proposition But A, is
the largest connected subset of X containing x, hence A, = A,.

(if) : Let Ay, A, be connected components that are not disjoint. Then A, UA, is connected by Proposi-
tion[5.4] Since x € A,UA,, thenA,UA, C A;, hence A, C A,. Similarly A, C Ay, therefore A, =A,. [

Proposition 5.13. Let X be a topological space. If every point of X has a connected neighborhood,
the connected components of X are open.

Proof. Let C be a connected component of X, x € C, and V a connected neighborhood of x. Since
x € CNV, the union CUYV is then connected, and CUV C C. Hence V C C, and C is a neighborhood
of x. We deduce from Proposition [I.9]that C is open. O

5.3 Locally Connected Spaces

Definition 5.14. A topological space X is said to be locally connected at its point x if x has a funda-
mental system of connected neighborhoods. If X is locally connected at each of its points, it is said to
be locally connected.

Example. The topological space R\ {0} is not connected, but it is locally connected.
Proposition 5.15. Let X be a topological space. The following conditions are equivalent:
(i) X is locally connected,
(ii) for every open set'V of X, each connected component of V is open in X.

Proof. (i) = (ii) : Let C be a connected component of an open set V in X, and x € C. We can choose
a connected neighborhood U of x such that U C V. Since U is connected, it must lie entirely in C. We
deduce from Proposition [I.9]that C is open.

(ii) = (i) : Given x € X, a neighborhood V of x in X, and open set U such thatx € U and U C V. Let
C be the connected component of U containing x. Since C is connected and open in X, then it is a
connected neighborhood of x contained in V. O

5.4 Path Connected Spaces

Definition 5.16. Let X be a topological space and a,b € X. A continuous map f from [0, 1] into X
such that f(0) =a and f(1) = b is called a path in X with origin a and extremity b. If any two points
of X are the origin and extremity of a path in X, X is said to be path connected.

Example. The open unit n-ball B" := {(x1,...,x,) €R" | x} +---+x2 < 1} is path connected. Indeed,
any points x,y € B" can be connected by the straight-line path f : [0, 1] — B" defined by

f@&)=(0—1)x+1y.
Proposition 5.17. Let X be an path connected topological space. Then X is connected.
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Proof. Take a point xo € X. For every x € X, let f; : [0, 1] — X be a path with origin x( and extremity x.
Since [0, 1] is connected by Proposition 5.8} then £, ([0, 1]) is connected by Proposition[5.7} Therefore

X = £:([0,1]) is connected by Proposition as xo belongs to all of the f;([0, 1]). O

xeX
Proposition 5.18. Let X be a topological space, and A,B C X. If A, B are path connected such that
ANB # &, then AUB is path connected.

Proof. Let x € A, y € B, and pick z € ANB. Choose paths f:[0,1] — A, g :[0,1] — B such that
f(0)=x, f(1) =z and g(0) =z, g(1) =y. We obtain a path & : [0,1] — AUB from x to y as follows:

r@ ift € [0, 1],
h(t)_{g(Zt—l) ifte[%j].
O

Proposition 5.19. Let XY be topological spaces, and [ : X — Y a continuous function. If X is path
connected, then f(X) is path connected.

Proof. If y1,y, € f(X), there exist xj,x, € X such that f(x;) =y; and f(x2) = y,. As X is path
connected, there exists a path 4 : [0, 1] — X from x; to x,. Hence foh: [0, 1] — Y is a path from y;
to ys. O

5.5 Locally Path-Connected Spaces

Definition 5.20. A topological space X is said to be locally path connected at its point x if x has a
fundamental system of path-connected neighborhoods. If X is locally path connected at each of its
points, it is said to be locally path connected.

Definition 5.21. Let X be a topological space and x € X. The path component of x in X is the set
formed by the points y € X such that a path with origin x and extremity y in X exists.

Proposition 5.22. Let X be a topological space. The following conditions are equivalent:
(i) X is locally path connected,
(ii) for every open set'V of X, each path component of V is open in X.

Proof. (i) = (ii) : Let C be a path component of an open set V in X, and x € C. We can choose a
path-connected neighborhood U of x such that U C V. Since U is path connected, it must lie entirely
in C. We deduce from Proposition[I.9that C is open.

(ii) = (i) : Given x € X, a neighborhood V' of x in X, and open set U such that x e U and U C V.
Let C be the path component of U containing x. Since C is path connected and open in X, then it is a
path-connected neighborhood of x contained in V. O
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Chapter 6

Metric Spaces

6.1 Metric Spaces
Definition 6.1. A metric on a set X is a function d : X X X — R, satisfying the following conditions:
(i) d(x,y) =0if and only if x =y,
(ii) d(x,y) =d(y,x) forall x,y € X,
(iii) d(x,z) <d(x,y)+d(y,z) for all x,y,z € X.

A set equipped with a metric is called a metric space.

Example. Letx = (x1,...,x,) €R", y=(x1,...,x,) €R", and setd(x,y) = \/(x1 —y1)2 44 (=)
It is known that d is a metric on R", and in this way R” becomes a metric space.

Definition 6.2. Let X be a set equipped with a metric d, and Y C X. Then Y becomes a metric space
with the restriction of d to Y x Y, and is called a metric subspace of X.

Definition 6.3. Let X be a metric space with metric d, take a € X, and p € R*.. The set B(a, p) :=
{x €X |d(a,x) <p} is called an open ball with center a and radius p. A subset A C X is said to be
open if, for each xy € A, there exists € € R’ such that B(xo, €) C A.

Definition 6.4. Let X be a metric space, and A C X. One says that A is closed if X \ A is open.

Proposition 6.5. Every metric space X is a topological space, and the topology of X is formed by the
open sets of X.

Proof. Let X be a metric space. The subsets @ and X of X are clearly open.

Take a family {A;};c; of open subsets of X. Let A = UA,-, and xo € A. There exists i € I such that
icl

xo € A;. Hence, there exists € € R’ such that B(xo, €) C A; C A. Thus A is open.

Suppose now that / is finite. Let C = ﬂA,-, and xo € C. For every i € I, there exists & € R’ such
i€l

that B(xo, &) C A;. If € € inf{¢&;}ic/, then B(xo, €) C A; for every i € I. Hence B(xg, €) C C, and C is

consequently open. O
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Proposition 6.6. Let X be a set, and d,d’" metrics on X. Suppose there exist c,c’ € R, such that
cd(x,y) <d'(x,y) < c'd(x,y)
forall x,y € X. The open subsets of X are the same for d and d'.

Proof. Let A be a subset of X that is open for d, and xo € A. There exists € € R’ such that {x €
X | d(xo,x) < e} CA. If x € X satisfies d’(xo, x) < ce, then d(xo, x) < €, so x € A. Hence A is also
open for d’. On the other side, one proves that if A is open for d’, then A is open for d by interchanging
the roles of d and d'. O

6.2 Continuity of the Metric

Proposition 6.7. Let X be a metric space. Its metric d : X x X — R is continuous.

Proof. Let (xp,y0) € X x X, and take € € RY. The set B(xo, %) X B(yo7 %) is a neighborhood of
(x0,y0) in X x X. If (x,y) € B(xo, §) x B(y0, §). then

S E
d(x,y) < d(x, x0) +d(x0, yo) +d(yo,y) < 5 +d(x0, yo) + 5 = d(x0, yo) + &,
E E
d(xo, yo) < d(x0,x)+d(x,y) +d(y, yo0) < §+d(x, y) t5= d(x,y)+E¢,
therefore |d(x, y) —d(xo0, yo)| < €. So d is continuous at (xp, o). O

Definition 6.8. Let X be a metric space, and A a nonempty subset of X. One calls diameter of A the
number diam(A) := sup {d(x, y) | x,y €A}.

Lemma 6.9. Consider R with the usual topology, and let A be a nonempty subset of R. Suppose that
A is bounded above, and x its supremum. Then x is the largest element of A.

Proof. LetV be a neighborhood of x in R, and € € R such that (x — &, x+ &) C V. By definition of
the supremum, there exists y € A such that x — & < y < x. Then y € V, meaning that VNA # &, thus
x is adherent to A.

Let x' € A such that ¥ > x, and set € =x' —x > 0. Then (¥ — &, x' + €) is a neighborhood of x/,
therefore intersects A. Lety € (x' —¢&,x’ +€)NA. Since y > x' — € = x, x is then not an upper bound
for A, which is absurd. So, x is the largest element of A. O

Proposition 6.10. Let X be a metric space, and A C X. The sets A and A have the same diameter

Proof. Denote d the metric of X. Let D = {d(x,y) ’ x,y €A} and D' = {d(x,y) } x,y €EA}. We
obviously have D C D’. One deduce from Proposition m that every point of A x A is adherent
to AxA. So D' =d(AxA) Cd(AxA), and d(AxA) C d(AxA) =D by Proposition and
Proposition Then D/ C D, and consequently D = D'. If D is bounded, we then deduce from
Lemma that the diameter of A and A is the largest element of D. If D is unbounded, then D and D’

have the same supremum oo, O

Definition 6.11. Let X be a metric space with metric d, and A, B two nonempty subsets of X. The
distance from A to B the number d(A, B) := inf {d(x,y) | x €A,y € B}. It s clear that d(A, B) and
d(B,A) are equal. If z € X, we define d(z, A) := inf {d(z, x) ‘ x€A}.
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6.3 Sequences in Metric Spaces

Proposition 6.12. Let X be a metric space, x € X, and A C X. The following conditions are equivalent:
(i) x€A,
(ii) there is a sequence (x,)nen of points in A that tends to x.

Proof. (ii) = (i) : Since every neighborhood of x intersects {x, },cn, then every neighborhood of x
intersects A which means that x € A.

(i) = (ii) : For every n € N, there exists a point x, € ANB(x, 1). Then (x,),en tends to x. O
Proposition 6.13. Let X be a metric space, (x,)nen a sequence of points in X, and x € X. The
following conditions are equivalent:

(i) x is an adherence value of (x,)nen along the filter base {{n,n+1, .. .}}neN,

(ii) there exists an infinite subset {x,, }ren of N, with ny < ngy1, such that (x,, )ken tends to x along

the filter base {{nk, {7 P }}keN'

Proof. (ii) = (i) : The point x is then an adherence value of (x,, )ken, and consequently of (x,),eN.

(i) = (ii) : If d is the metric of X, there exist n; € N such that d(x,,, x) < 1, np € N such that n, > n,
and d(x4,, x) < %, n3 € N such that n3 > ny and d(x,,, x) < 1, and so on. So, the sequence (xu, ke
tends to x along {{nk,nk+1, "‘}}keN' O

Proposition 6.14. Let X,Y be metric spaces, AC X, f:A —Y a function, a €A, andy €Y. The
following conditions are equivalent:

(i) the pointy is an adherence value of f along the filter {ANV }ycy, where ¥ is a fundamental
system of neighborhoods of a,

(ii) there exists a sequence (xu)nen in A such that (x,)nen tends to a and (f (x,,))n o fends toy.

Proof. (ii) = (i) : On one side, if V € ¥, there exists i € N such that x, € ANV if n > i. On the
other side, if W is a neighborhood of y, there exists j € N such that f(x,) € W if n > j. Then,
f(xn) € FANV)NW if n > max{i, j}.

(i) = (ii) : Denote by Bx(a, p) and By(y, p’) the open balls of centers and radius a,y and p,p’
respectively. Take a point x; € By (a, 1) NA such that f(x;) € By(y, 1), take a point x, € By (a, 3) NA
such that f(x) € By(y, 4), take a point x3 € By(a, %) NA such that f(x3) € By(y, %), and so on.

Hence, the sequence (x,),en tends to a, and (f (xn))n o tends to y. O

Proposition 6.15. Let X,Y be metric spaces, f : X — Y a function, and x € X. The following condi-
tions are equivalent:

(i) f is continuous at x,

(i) for every sequence (x,)nen in X that tends to x, the sequence (f(xy)), . tends to f(x).

Proof. (i) = (ii) : Consider the filter base {{x,, X1, }}n <y and a neighborhood V' of f(x) in
Y. There exists a neighborhood U of x in X such that f(U) C V. And there exists k € N such that
{xk, Xk+1s - - } - U. Then, {f(xk), f(ka), ce } - V.

(ii) = (i) : Let dx and dy be the metrics of X and Y respectively, and suppose that f is not continuous at
x. There exists € € R, such that, forany n) € R, there is y € X with dx (x, y) < 1 yetdy (f(x), f(v)) >
€. If we successively take 1 =1, %, %, ..., we obtain points yj, y2, ¥3, ... of X such that dx (x, y,) < %
and dy (f(x), f(yn)) > € for n € N. Then (y,)nen tends to x, but (f(yn))neN does not tend to f(x). [
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6.4 Complete Metric Spaces

Definition 6.16. Let X be a metric space with metric d. A sequence (x;),cn of points in X is called a
Cauchy sequence if, for every € € R, there exists p € N such that m,n > p implies d(x,,, x,) < €.

Proposition 6.17. Let X be a metric space with metric d. If a sequence (x,)nen of points in X has a
limit in X, then it is a Cauchy sequence.

Proof. Suppose that (x,),en tends to x. For every € € R*, there exists a positive integer p such that
n > p implies d(x,, x) < 5. Then, if m,n are positive integers bigger than p, we have d(x,, x) < §
and d(x,, x) < §, which implies d (X, x,) < d (X, x) +d(x,, x) < €. O

Definition 6.18. A metric space X is said to be complete if every Cauchy sequence of points in X has
a limit in X.

Proposition 6.19. Let X be a metric space, (X,)nen a Cauchy sequence in X, and (x,,)ren a subse-
quence of (xn)nen. If the sequence (xp, )ken has a limit I, then (x,)nen also tends to 1.

Proof. Forevery € € R, there exists a positive integer p such that, if m,n are positive integers bigger
than p, then d(x,, x,) < §. Fix a positive integer n bigger than p. Since (X, )ren tends to /, then
(d(Xn> %n) ) 1oy tends to d (1, x,), s0 d(l,x,) < § < €. As this is true for all positive integers n > p,
then (x,),ecn also tends to [. O

Proposition 6.20. Let X be a complete metric space, and Y a closed subspace of X. Then Y is
complete.

Proof. Let (x,)nen be a Cauchy sequence in Y. It is also a Cauchy sequence in X, hence has a limit /
in X. We deduce from Proposition that/ € Y. ButY =Y, thus (x,),en has a limitin Y. O

Proposition 6.21. Let X be a metric space, and Y a complete metric subspace of X. Then Y is closed
in X.

Proof. Take [ €Y. We know from Proposition that there exists a sequence (x),en in Y that tends
to [. So, we deduce Proposition that (x,),en is a Cauchy sequence. It thus has a limit in Y since
Y is complete. As [ is its limit, we must have [ € Y, therefore Y =Y. O
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Chapter 7

Fundamental Groups

7.1 Homotopy of Paths

Definition 7.1. Let X be a topological space, and f, g two paths in X. These paths are said to be path
homotopic if they have the same origin a, the same extremity b, and if there is a continuous function
F :]0,1] x [0,1] — X such that, if s,z € [0,1],

F(s,0)=f(s) and F(s,1)=g(s),

F(0,t)=a and F(l,7)=b.

In that case, one writes f ~, g. The function F' is called a path homotopy between f and g.
Example. Let f,g be paths in R”. The function F : [0,1] x [0, 1] — R" defined by

F(x, 1) = (1—=1)f(x) +18(x)
is a path homotopy between f and g.

Proposition 7.2. The relation >~ on paths in a topological space X with fixed origins and extremities
is an equivalence relation.

Proof. Given a path f, the function F(x, t) = f(x) is the required path homotopy to get f ~, f.

If f ~, g is established by a path homotopy F(x, r), then G(x, 1) = F(x, 1 —t) is a path homotopy
between g and f.

Suppose that f ~, g by means of a path homotopy F, and g ~, h by means of a path homotopy G,
then f ~, h by means of the path homotopy H : [0, 1] x [0, 1] — X defined by the equation

[F(x21) ift € [0, 1],
Hix, 1) = {G(x, 2 1) ifre [%,i].

If f is a path, denote its path-homotopy equivalence class by [f].

Definition 7.3. Let X be a topological space, f a path in X from a to b, and g a path in X from b to c.
Define the product f * g of f and g to be the path % in X given by the equation

h(s):{f(Zs) for s € [0, ],

2
g(2s—1) forse [4,1]

—_
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The product operation of Definition[7.3]extends to an operation on path-homotopy classes defined by

[f]*[g] :==[f*g].

Lemma 7.4. Let X,Y be a topological space, k : X — Y a continuous function, and F is a path
homotopy between two paths f, ' in X.

(i) Then koF is a path homotopy in'Y between ko f and ko f'.
(ii) Moreover, if g is a path in X with f(1) = g(0), then ko (fxg) = (ko f)x(kog).
Proof. (i) : The function ko F : [0, 1] x [0, 1] — Y is continuous such that, if 5,7 € [0, 1],

koF(s,0)=kof(s) and koF(s,1)=kof'(s),
koF(0,t) =ko f(0) =ko f(0) and koF(1,t) =kof(1)=ko f'(1).

(ii) : We have

(ko f) (ko g)(t)-

[

o Frr) — ko d [ fort€[0,3]  [kof(2r) forre [0,4]
ko(f*g)(t) =k { i { i -

g2r—1) forre[1,1]  |kog(2r—1) forre [L 1]

O]

For x € X, let e, denote the constant path carrying all of [0, 1] to the point x. Given a path f in X from
a to b, denote the reverse of f by f. It is the path from b to a defined for s € [0, 1] by f(s) := f(1 —s).

Proposition 7.5. The operation *x on path-homotopy classes in a topological space X has the following
properties:

(i) If [f])* ([g] = [h]) is defined, so is ([f] [g])  [h], and they are equal.
(ii) If f is a path in X from a to b, then

[f1x[es] =[] and [ed] = [f] =[f].
(iii) If f is a path in X from a to b, then
[f1%[f]=led] and [f]*[f] = [es].

Proof. (ii) : If e is the constant path at 0, and i : [0, 1] — [0, 1] the identity map, then e i is a path
from O to 1. Since i and eg * i are paths in R, there is a path homotopy F between them. Then fo F is
a path homotopy in X between the paths foi= f and fo(eyxi) = (foeg)*(foi)=e,*f. Similarly,
using the fact that i x e; and i are path homotopic in [0, 1], one shows that [f] * [e;] = [f].

(i) : The path i i, that begins and ends at 0, is path homotopic to the constant path e, as paths in R
once again. Denoting F' a path homotopy between them, we get from Lemma [/.4|that f o F is a path
homotopy between foeg = e, and (foi) * (foi) = f* f. With a similar argument, using the fact that

i*i and e; are path homotopic in [0, 1], one shows that [f] * [f] = [ep)].

(i) : We have
f(21) fort € [O, l],
f(21) forz € [0,5], 3
fx(gxh)(t) = { 27 = S g(2(2t 1)) fort € [§,3],
geh(2—1) fort € [31], W22 —1)—1) forre é,?],
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1

il
"= (gt—1) forte[§,1],
’ h(2t—1) forte [4,1].

2s for s € [O,
[

Then (f * (g*h)) oo = (f*g)*hwith a: [0, 1] = [0, 1] defined by a(s) = ¢ s+1 forse
1

As o and i are paths in R, we get by Lemma(7.4|that (fx(gxh)) oot =, ((f*g)xh)oi=(f*g)xh. O

frg(2t) forref0,1], f(41) for ¢ € [0,
1

and (fxg)*xh(t) = {h(Zt—l) fort € [%, }

7.2 Fundamental Groups

Definition 7.6. Let X be a topological space, and a € X. A path in X that starts and ends at a is called
a loop at the basepoint a. The set of all homotopy classes [f] of loops f: [0, 1] — X at the basepoint
a is denoted (X, a).

Proposition 7.7. Let X be a topological space, and a € X. The set m) (X, a) is a group with respect to
the product .

Proof. By restricting to loops f, g with a fixed basepoint, we guarantee that the product f * g or more
exactly the product [f]*[g] = [f *g] is defined. It remains to verify the three axioms for a group:

* From Proposition(i), for all [f], [g], [h] € m (X, a), [f]* ([g] *[h]) = ([f] *[g]) = [A].
» From Proposition[7.5)(ii), for every [f] € m (X, a), [f] * [ea) = [f] and [e4] * [f] = [f].
» From Proposition [7.5](iii), for every [f] € m (X, a), [f] * [f] = [es] and [f]  [f] = [ed)-
O

Definition 7.8. Let X be a topological space, and a € X. The group 7; (X, a) is called the fundamental
group of X at the basepoint a.

Example. For a convex set X in R”" with basepoint a € X, m; (X, a) is the trivial one-element group.
Indeed the function F : [0, 1] x [0, 1] — R” defined by

F(x, 1) = (1—1)f(x) +18(x)
is a path homotopy between any loops f, g based at a.

Definition 7.9. A topological space X is said to be simply connected if it is a path connected space
and if 7; (X, a) is the trivial one-element group for every a € X.

Proposition 7.10. Let X be a simply connected topological space. Then, any paths in X having the
same origin and extremity are path homotopic.

Proof. Let f,g be paths in X from a to b. Then f * g is defined and is a loop on X based at a. Since X
is simply connected, f * g is path homotopic to e,. Using Proposition[7.5] we get

1= [f1xlen] =[]+ 8+ gl = [f * 8]+ [8] = [ea] * [¢] = [g]-
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Proposition 7.11. Let X be a topological space, a,b € X, and f a path from a to b. Define the map
f: 7171(X,61> — ”1(X7b> by
F([A]) = [£] = 1) = [£].

Then the map f is a group isomorphism.

Proof. Let [g],[h] € m (X, a). We have

F(le]) = 7(1n]) = (171 % [g] * [£1) = (L) =[] % [£])
= [f] [g]* [] = [f]
= F(lg] *[n)

Then, f is a homomorphism. To prove that f is an isomorphism, we show that ]A?: m(X,b) = m(X,a)
defined for every [h] € m (X, b) by

F(1R) =[] # (B % []]

is an inverse for f. We have }_of([h]) = [f]* ([f] = [B] % [f]) * [f] = [h]. A similar computation shows
that fo f([h]) = [h]. O

Suppose that 4 : X — Y is a continuous function that carries the point a of X to the point b of Y. One
denotes this fact by writing h : (X, a) — (Y, D).

Definition 7.12. Let X, Y be topological spaces, and i : (X, a) — (Y, b) a continuous function. Define
he:m(X,a) — m(Y,b) by
he([f1) = [ho f].

The map A, is called the homomorphism induced by # relative to the basepoint a.
Proposition 7.13. Let X,Y,Z be topological spaces.
(i) Ifh: (X,a) — (Y,b) and k: (Y, b) — (Z, c¢) are continuous maps, then (koh), = k, o h..
(ii) Ifi: (X, a) — (X, a) is the identity map, then i, is the identity homomorphism.

Proof. (i) : We have both equalities

(koh).([f]) = [(koh)o f],
(keoh)([f]) = ks (h*([f])> =k.([ho f]) = [ko (ho f)].

(ii) : We have i, ([f]) = [io f] = [f]. O

Corollary 7.14. Let X,Y be topological spaces. If h: (X, a) — (Y, b) is a homeomorphism from X to
Y, then h, is an isomorphism from m (X, a) to m; (Y, b).

Proof. Letk: (Y,b) — (X, a) be the inverse of h. Then k. oh, = (koh), = i,, where i is the identity
map of (X, a). Besides, h, ok, = (hok), = j., where j is the identity map of (Y, b). As i, and j, are
the identity homomorphisms of 7; (X, a) and m; (Y, b) respectively, k. is then the inverse of /.. O

Proposition 7.15. Let X,Y be topological spaces, and (a,b) € X x Y. Then m (X XY, (a, b)) is
isomorphic to (X, a) x m (Y, b).
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Proof. We know from Propositionthat the existence of a loop f: [0, 1] — X X Y at the basepoint
(a, b) is equivalent to the existence of a loop g : [0, 1] — X at the basepoint a, and aloop 4 : [0, 1] = Y
at the basepoint b such that f = (g, h). We also know from Proposition that the existence of a
path homotopy F : [0, 1] x [0, 1] — X x Y between two loops f1, f> at the basepoint (a, b) is equivalent
to the existence of a path homotopy G : [0, 1] x [0, 1] — X between two loops g1, g2 at the basepoint a,
and a path homotopy H : [0, 1] x [0, 1] — Y between two loops &, h, at the basepoint b such that f; =
(g1, 1), f>= (g2, h2), and F = (G, H). Thus, the function &t : 7y (X x Y, (a, b)) = (X, a) x 7 (Y, b)
defined, for a loop f = (g, h) at the basepoint (a, b), by ([f]) = ([g], [A]) is bijective. It can also be
extended to a group homomorphism since, for two loops f1 = (g1, /1), f2 = (g2, h2) at the basepoint
(a, b), we have

a([Al«[f]) = a((fi=f]) = (g1 * 8], [ *ha]) = ([g1] % [2], [n] % [ha]) = ex([fi]) * ([f2])-

Hence, ¢ is an isomorphism. 0

7.3 The Fundamental Group of S"

Lemma 7.16. For py, p>, p3 € R", the triangle of vertices p1, p2, p3 is
T={tupi+bp2ttps |t ERy i+ +13 =1}

Consider a topological space X, and a continuous function f: T — X. Fori,j € {1,2,3} withi < j,
the standard parametrisation of f restricted to the edge from p; to p; is the path

fii 0,1 =X, t— f((1—1)pi+1pj)
from f(p;) to f(pj). We have, fi3 =, fi2* f2.

Proof. Consider the function

(1 —t—ts)p1+2tspr+ (t —ts)p3 for ¢

q:10,1]x[0,1] =T, (t,5)+—
(1—t—s—ts)p1 +2(1 —t)spy+ (t —s+ts)p; fort

<
t>

DI 1l

We have

F((L=1)p1+1tp3) = fi3(t) for

f( (1—t p1+tp3) fi13(t)  for

f( (1—21) 1+2tpz) f12(2t) for ¢

f( (1-(2t—1)) p2+(2t—1)p3> — f3(2t—1) forr
=f(p1) and f(q(1,5)) = f(p3).

Hence, the function
F:[0,1]x[0,1] =X, (t,)— f(q(t,s))

is a path homotopy from fi3 to fi2 * f3. O]
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Lemma 7.17. Let X be a topological space, f:[0,1] — X a path in X, and ay, ... ,a, € R such that
O=ap<a)<--<a,=1 Forie{l,...,n}, letl;: [0, 1] — [a;_;, a;] be the affine function such that
1;(0) =a;—y and I;(1) = a;, and

fi[0,1] =X, tw foli(t)
the standard parametrisation of f restricted to |a;—;, a;]. Then, [f] = [fi] %« * [fu].

Proof. Using Lemmawith J/ equal to the identity map if,, 4,] on [ao, az], we prove that [} x [, ~,
I12 which is the affine function such that /;5(0) = ap and /12(1) = a2. More generally, fork € {3,...,n},
we can use Lemma with f equal to the identity map iy, 4,] On [ao, ax] to prove that Iy * Iy =, Iy,
where /11 and [y, are the affine functions such that /;;_1(0) = l1x = ag, 1,1 (1) = ax_1, and I} = a.
Hence, we successively obtain

Lixlyxlyx---xl, =lipxlz3*x---x[,
2113*...*ln

=lin
which is the identity map on [0, 1]. We deduce from Lemma|7.4] that

(foly)x(fobk)*(fol3)x---x(foly)=fol,=f
fixfaxfax-xfu=f
Al * [l x 3] x [l = [f]-

O]

Proposition 7.18. Let X be topological space, and A, B two open subsets of X such that X = AUB and

ANB # @. Suppose that A,B are path connected, and take x € AN B. Consider the inclusion maps

i:A— Xand j:B< X. Then, (X, x) is generated by the images of the induced homomorphisms
i :m(Ax) = m(X,x) and j.:m(B,x) = m(X,x).

Proof. Let f: [0, 1] — X be a loop based at x. We know from Theorem that there exists a positive

) . .. ) i—1 i7. .
integer n such that, for every i € {1,...,n}, the restriction of f to the interval [—, f} 18 contained
n
. . .. . i—1 i .
in A or in B. Let f; be the standard parametrisation of f restricted to [ , f] , that is
n 'n

[— 141

£::10,1] > A (or B), t»—>f(l T )

Since A, B are path connected, we can find a path #; from f (i> to x so that
n

. iff(i) € A, then f; : [0, 1] — A is a path in A,
n

. iff(i) € B, then ; : [0, 1] — A is a path in B.
n
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Using Lemma(7.17, we may write

f:fl*fZ**fl**fnfl*fn
:fl*hl*f_zl*fz*hz*---*l_a,',l*ﬁ*hi*---*fzn,z*fn,l*hn,l*l_qn,l*fn
:kl*kZ*"'*knfl*kna

where
k] :fl*hl, k2 :}_Zl*fz*hz, ey ki:}_li,1 *f,'*hi, ey kn,1 :ljlnfz*fn,l*hnfl, kn :}_lnfl*fn.
To finish, for every i € {1,...,n}, k; is a loop based at x in A or in B. O

Corollary 7.19. Let X be a topological space, and A,B open sets of X such that X = AUB and
ANB # @. If A and B are simply connected, then X is simply connected.

Proof. As A and B are path connected, we deduce from Proposition [5.18] that X is path connected.
Choose a base point x € AN B. Since m; (A, x) and 7; (B, x) are the trivial one-element group, 7; (X, x)
is then generated by the neutral element by Proposition S0 it is trivial. O

Corollary 7.20. If n is a positive integer such that n > 2, then S" is simply connected.

Proof. Write S" = AUB, where A =S"\ {(0,...,0,1)} and B =5"\ {(0,...,0,—1)}. We know
from the stereographic projection of A onto R” that A is homeomorphic to R”. Moreover, the function
f:A— B, a— —a is a homeomorphism between A and B. Hence, A and B are simply connected,
and also S" by Corollary O
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Chapter 8

Covering Spaces

8.1 Covering Maps

Definition 8.1. Let X,Y be topological spaces, and p : X — Y a continuous surjective function. An

open set A of Y is said to be evenly covered by p if the inverse image p~!(A) is equal to |_|A,- such
il

that A; is an open subset of X, and the restriction of p to A; is a homeomorphism of A; to A. The family

{A;}icr is called a partition of p~!(A) into slices.

Definition 8.2. Let X,Y be open topological spaces, and p : X — Y a continuous surjective function.
If every point a of Y has an open neighborhood A that is evenly covered by p, then p is called a
covering map, and X is said to be a covering space of Y.

Example. Consider R with the usual topology, and S' = {(cost, sint) | t €10, 27:]} equipped with
the topology induced by the usual topology of R?. For any point a = (cosu, sinu) € S', the set
Uq = {(cost, sint) |t € (u—1,u+ 1)} is then an open neighborhood of a. The function p : R — S!
given by p(x) = (cos2mx, sin27x) is continuous and surjective. Moreover,

_ u—1 u+1 u—1 u+1 ) :
* we have p~}(U,) = k|EL< o +k, ST +k), where (7271: +k, ox —Hc) is open in R,
L u—1 u+1 . .
* the restriction py of p to (H +k, TS +k) is clearly a homeomorphism onto U,,.

Then, p is a covering map.

Definition 8.3. Let X,Y be topological spaces, and f : X — Y a function. A functions:Y — X is
called a section of f is p(s(y)) =y forevery y € Y.

Proposition 8.4. Let X,Y be topological spaces, and p : X — Y a covering map. For every evenly
covered set V. C Y, and every point x € p~'(V), there exists a continuous section s : V — p~' (V) of
the restriction p: p~' (V) =V such that s(p(x)) = x. If V is connected, then s is unique.

Proof. We can write p~! (V) = U LUW such that U and W are open, x € U, and the restriction pu:U—
V is a homeomorphism. The inverse s = p|_U1 is clearly a continuous section of p|y, and consequently
of p by extending its codomain to p~! (V).

If V is connected, then U is connected and is a connected component of p~! (V). Suppose r: V — X is
another continuous section of p such that r(p(x)) = x. Since r(V) C p~'(V) and V is connected, then
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r(V) is contained in the connected component of p~! (V) that contains x which is U. As p(r(y)) =y
forevery y €V, r:V — U is then the inverse of pjy : U — V. O

Proposition 8.5. Let X,Y be topological spaces, and p : X — Y a covering map. If Yy is a subspace
of Y, and if Xo = p~'(Yy), then the map po : Xo — Yo obtained by restricting p is a covering map.

Proof. Giveny € Yy, let V be an open set in ¥ containing y that is evenly covered by p. If {U;}ic; is
a partition of p~!(V) into slices, then V NY; is a neighborhood of y in Yy, and {U; N Xy} c; is formed
by disjoint open sets in Xy whose union is p~!(V NY,). Moreover, the restriction of p to U;N X is a
homeomorphism onto V NYj. O

Proposition 8.6. Let X,X',Y,Y’ be topological spaces, and p : X — Y, p' : X' — Y’ covering maps.
Then pxp' : X x X' — Y xY' is a covering map.

Proof. Let (y,y') € Y xY’, and V, V' neighborhoods of y,y’ respectively, that are evenly covered by
p, P respectively. Let {U;}ier, {U}} je; be partitions into slices of p~1(V), p'~1(V’) respectively. Then
pxp) (VX = ; X U;. Moreover, the restriction of p x p’ to U; X U’ is a homeomorphism
NNV x V! UixUj. M he restriction of p x p/ to Uy x U} isah hi
2
onto V x V'. O

8.2 Function Liftings

Definition 8.7. Let £, X,Y be topological spaces, p : X — Y a covering map, and f : E — Y a contin-
uous function. A lifting of f is a function f : E — X such that po f = f.

E*>X

b

Example. Consider the covering map p : R — S! defined by p(x) = (cos27x, sin27x). The path
f:10,1] = S! from (1, 0) to (—1, 0) given by f(¢) = (cosnt, sinzt) lifts to the path f: [0, 1] — R
from O to § given by f(t) = 5. The path g : [0, 1] — S! given by g(t) = (cos nt, —sin7t) from (1, 0)

to (—1,0) lifts to the path g : [0, 1] — R from 0 to —J given by g(r) = —%.

Lemma 8.8. Let X,Y be topological spaces, and p : X — Y a covering map. Consider the subspace
X xpX ={(a,b) eXxX | pla)=p(b)}
of the product space X x X. Then, A = {(a, a) ‘ ac X} is an open and a closed subset of X x , X.

Proof. Take (x, x) € A and choose an open set U C X such that x € U and the restriction p: U — Y
is injective. Then, (U xU) N (X x,X) =U x, U is an open neighborhood of (x, x) in X X, X. As
Ux,U={(a,b)cUxU |p(a)=p(b)} ={(a,a) |ac U} CA, then Ais aneighborhood of points,
so is open in X X, p by Proposition @}

Take (x1,x2) € X X, X \ A, and choose an evenly covered open set V C Y containing p(x;) = p(x2).
Since x| # x», they cannot be in the same slice, so there exist disjoint open sets Uy, U, € p~ (V) such
that x; € U; and x, € U,. Therefore, the set (U; x U») N (X X, X) contains (x1, x2), is openin X x , X,
and is included in X %, X \ A. We deduce from Proposition that X x , X \ A is open, so A is closed
inX x,X. O
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Lemma 8.9. Let X,Y be topological spaces, p : X — Y a covering map, E a connected space, and
f:E —Y a continuous function. If g : E — X and h : E — X are two liftings of f, we have either
g="horg(e) # h(e) foreverye € E.

Proof. Recall that X xy X = {(a,b) € X x X | p(a) = p(b)} and A= {(a,a) | a € X}. Consider
the continuous function @ : E — X xy X defined by ®(e) = (g(e), h(e)). Let A= {e € E | g(e) =
h(e)} = @~'(A). We know from Lemma that A is open and closed in X x, X. Then, A is open
and closed in E. Since FE is connected, either A=F or A = &. OJ

Theorem 8.10 (Lebesgue number). Let X be a compact metric space with metric d, Y a topological
space, O a family of open sets covering Y, and f : X — Y a continuous function. There exists p € R,
such that, for any x € X, f(B(x, p)) is contained in an open set of 0.

Proof. For any n € N, let X,, be the set of points x € X having the property that there exists U € &
such that B(x,27") C f~!(U). For any x € X, there exists U € & such thatx € f~1(U). As f~1(U) is
open, there exists n € N such that B(x, 27") C f~!(U), then U X, =X.

neN
It is clear that X, C X, 1. Moreover, X, C X; ;. Indeed, let x € X, and U € & such that B(x,27") C

f~Y(U). For every z € X such that d(x, z) < 27"~ !, we have B(z,27""') C B(x,27") C f~!(U), then
7€ X,11. Hence B(x,27"~!) C X,,; 1, meaning that X, | is a neighborhood of x.
The fact X, C X, | implies U X, C U X, and then U X, =X. As X is compact, X = X, for some

neN neN neN
n € N, and consequently X = X,,. O

Theorem 8.11. Let X,Y be topological spaces, p : X — Y a covering map, and (a,b) € X XY such
that p(a) = b. Any path f :[0,1] — Y beginning at b has a unique lifting to a path f:[0,1] — X
beginning at a.

Proof. We know from Lemmathere exists at most one lifting £ : [0, 1] — X such that f(0) = a.
Then, the existence remains. Let & be a family of evenly covered open sets covering Y. We know

1
from Theorem [8.10| that there exist n € N and Vi,...,V,, € & such that f ( [l , i]) CV; for every
no'n
1
i€{1,...,n}. Werecursively define n continuous functions g; : {l—, i] — X foreveryi€{l,...,n}
nn

such that

i—1 i

svre o] pla) = ),

i i
* 81(0) =a, and gi(*) = 8i+1 (*)
n n
Using Proposition we deduce the existence of a section sy : V| — p‘l(Vl) of the restriction
1
p:p ' (Vi) = Vi such that s, (p(a)) = a. Then, we may define g; : {0, f} — X by g1(1) =51 (f(2)).
n
Suppose that g; has already been defined, and consider a section s;1 : Viy1 — p‘l (Viy1) of the restric-
tion p : p~!(Viy1) — Viy1 such that s; (f(l)) =Si11 (p (gi(l>>> = gi(£>. We may define
n n n
i i+1 . . cpe
gitl: [7, —} — X by gi+1(t) = si41 (f(t)) Hence g1 x g2 * - - - * g, is the required lifting f. O
n o n
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Proposition 8.12. Let X,Y be topological spaces, p : X — Y a covering map, and (a, b) € X XY such
that p(a) = b. Consider a continuous function F : [0, 1] X [0, 1] = Y such that F(0,0) = b. There
exists a unique lifting of F to a continuous function

F:[0,1]x[0,1] =X suchthat F(0,0)=a.

Proof. We know from Lemma [8.9| there exists at most one lifting £ : [0, 1] x [0, 1] — X such that
F(0,0) = a. Then, the existence remains.

Let & be a family of evenly covered open sets covering Y. We know from Theorem that

ST 1
there exist m,n € N and Vjy,...,V,,, € O such that F([l, i} X [] ,]}> C V;; for every
m 'm n 'n
(i, j) €{1,...,m} x{1,...,n}. We recursively define on each row and from the bottom to the top mn
i il S
continuous functions Fj; : [l—, i} X {] ,1} — X forevery (i, j) € {1,...,m} x{1,...,n} such
m 'm n'n
that
W( t)e[i_l i}x{j_l I1 p(y(s.0)) = F(s.1)
* V(s = = ij(s,1)) =F(s,1),
) n ,l’l n 7n y P\L'ij
s Fy(0, 0):aand17}1<i,()> =Fi+11<i,0>,
m m
) : ) . ) P ) P
. F1j+1(07 l) =F11<0, l) and Fil+1<*, l) =Fi+1j+1<*> l)-
n n m’ n m’ n

Using Proposition we deduce the existence of a section sy : Vi1 — p‘1 (V11) of the restriction
. 1 1

p:p ' (Vi1) = Vi1 such that sy (p(a)) = a. Then, we may define Fj; : [O, —] X {0, f} — X by
m n

Fii(s,t) = s11 (F (s, t)) Suppose that Fy,...,F;; have already been defined, and consider a section
Sivt,j i Vigr,j — pil(ViH,j) of the restriction p : p*I(ViHyj) — V41, such that

wan(r(2)) = (R D)) ) - A )

) i i
We may define Fi ;- [i, i] X [A s
m n.n

" } — X by Fi+l,j:Si+1(F(sa f))-

14
Remark that, due to the uniqueness of the lifting of the path (i, JZ Tt
m

i ) i
atEj<l J )zFiHj(é,JT),wehave

)
m n

) with variable ¢ beginning

(s, 1) € {i} « [j_l, 1}, Fy(s. ) = Fin (s, 1).

n n

Using the same argument with the lifting beginning at F; j (i, l) =F i+ (i, 1), we get
m n m'n

(s, 1) € [% ﬂ y {i} Fi(s, 1) = Foyon (5, 1).

o 1 1 i
Hence, F' = F;j on [l—, L] X [J ,l} — X, for every (i, j) € {1,...,m} x {1,...,n}, is the
m ' m n 'n
required lifting of F. O
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Corollary 8.13. Let X,Y be topological spaces, p : X — Y a covering map, and (a,b) € X XY such
that p(a) = b. Consider two paths f : [0, 1] =Y and g : [0, 1] = Y beginning at b and ending ¢, and
their respective liftings f and g beginning at a. The following conditions are equivalent:

(i) f and g are path homotopic,
(ii) f(1)=g(1) and f,§ are path homotopic.

8

Proof. (i) = (ii) : Consider a path homotopy F : [0, 1] x [0, 1] — Y such that F(0,7) = f(¢), F(1,t) =
g(t), F(s,0) = b, and F(s, 1) = c. Let F : [0,1] x [0, 1] — X the lifting of F such that 7(0,0) = a
described in Proposition Path lifting uniqueness implies F (0, ) = f(¢) and F(1,¢) = g(t). More-
over, F (s, 0) and F (s, 1) are the liftings of e, and e, respectively, so must be constant. Consequently,
f(1) = g(1) and F is a path homotopy between f and g.

(if) = (i) : If f and § are path homotopic with path homotopy F, then po f = f and po g = g are path
homotopic with path homotopy po F . O

Definition 8.14. Let X,Y be topological spaces, and p : X — Y a covering map. Let b € Y and choose
a € X so that p(a) = b. Given an element [f] of 7r; (Y,b) , let £ : [0,1] — X be the lifting of f to a path
in X that begins at a. Define the function

o :m(Y.b) = p~'(b). [fl= (D).
One calls ¢ the lifting correspondence derived from the covering map p and the origin a.

Proposition 8.15. Let X,Y be topological spaces, and p : X — Y a covering map. Let b € Y and
choose a € X so that p(a) = b. If X is path connected, then the lifting correspondence

¢:ﬂl(Y7b)_>p_l(b)v [f]'%f(l)
is surjective. If X is simply connected, then ¢ is bijective.

Proof. Letd € p~'(b), and f : [0, 1] — X a path from a to a’. The path f is the lifting of f = po f
which is aloop in Y at b, then ¢ ([ f]) =d/, and ¢ is consequently surjective.

Suppose that X is simply connected. Take [f], [g] € 7 (Y, b) such that ¢ ([f]) = ¢ ([g]). Let fand  be
the liftings of f and g respectively that begin at a. Then f(1) = g(1). The fact X is simply connected
implies the existence of a path homotopy F between f and g. Then p o F is path homotopy between
fand g, that is [f] = [g]. O

Theorem 8.16. The group m (S', (1,0)) is isomorphic to the additive group (Z,+).

Proof. Consider the covering map p : R — S' given by p(x) = (cos 27x, sin27x). We have p~!((1, 0))
Z. Since R is simply connected, we deduce from Proposition [8.13]that the lifting correspondence

¢2751(Sl,(1,0))—>Z, [f]Hf(l)

is bijective. It remains to show that ¢ is a homeomorphism.

Given [f],[g] € m (S', (1,0)), let £, be their respective liftings to paths in R beginning at 0. Denote
n= f(1) and m = g(1). Define the path

g:[0,1] =R, t—~n+g).
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Since pog(t) = p(n+g(t)) = p(g(t)), the path g is then the lifting of g that begins at n. Then
f*&:10, 1] — R is defined, and is the lifting of f * g that begins at 0. As f*g(1) = g(1) = n-+m, we
obtain

o ([f1x[8]) =n+m=0([f]) +¢(lg])-
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Chapter 9

Homotopy

9.1 Homotopy of Functions

Definition 9.1. Let X, Y be topological spaces, and f, g continuous functions from X into Y. One says
that f is homotopic to g if there is a continuous function F : X x [0, 1] — Y such that

VxeX, F(x,0)=f(x) and F(x,1)=g(x).
In that case, one writes f ~ g. The function F is called a homotopy between f and g.
Lemma 9.2. The relation ~ on homotopic functions is an equivalence relation.

Proof. Given a function f, the function F(x, ) = f(x) is the required homotopy to get f ~ f.

If f ~ g is got by a homotopy F(x, 7), then G(x, 1) = F(x, 1 —t) is a homotopy between g and f.
Suppose that f ~ g by means of a homotopy F, and g ~ /& by means of a homotopy G, then f ~ & by
means of the homotopy H : X x [0,1] — Y defined by the equation

Hnt) = {F(x, 21) if 1 € [0,

2
G(x,2t—1) ifre |41

—_

I
].

O]

Definition 9.3. Let X be a topological space, and A C X. A retraction of X onto A is a continuous
function r : X — A such that the restriction r : A — A is the identity map of A. If such a function r
exists, one says that A is a retract of X.

Definition 9.4. Let X be a topological space, and A C X. Suppose that there exists a continuous
function F : X x [0, 1] — X such that

VxeX, F(x,0)=x and F(x,1)€A,
Vt€[0,1], Yac A, F(a,t)=a.

The homotopy F between the identity map F'(x,0) of X and the retraction F(x, 1) of X onto A is called
a deformation retraction of X onto A, and A is called a deformation retract of X.

Proposition 9.5. Let X be a topological space, A C X, and x € A. Consider the homomorphism
i : (A, x) — m (X, x) induced by the inclusion map i : A — X.
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(i) IfAis a retract of X, then i, is injective.
(ii) If A is a deformation retract of X, then i, is bijective.

Proof. (i):1f r: X — A is aretraction, then roi is the identity map of A. It follows that (roi), = r, oi,
is the identity map of 7; (A, x), which implies that i, is injective.

(if) : Suppose that F : X x [0,1] — X is a deformation retraction of X onto A. Since F(X, 1) = A,
then for any loop f: [0, 1] — X based at x, F(f(.), .) is a homotopy between f and a loop F (f(.), 1)
in A. Moreover, as F(f(0),1) = F(f(1),1) =x for every t € [0, 1], then f ~, F(f(.),1). Hence

{F(f(.), 1)] = [f], meaning that [f] = i, < {F(f(.), 1)} ) and i, is consequently surjective. O

Example. There is no retraction of th real disc B((0,0), 1) onto S'. Suppose, indeed, that S' is
a retract of B((0,0),1). According to Proposition the homomorphism i, : (S, (1,0)) —
m (B((0,0), 1), (1, 0)) induced by the inclusion map i : S' < B((0,0), 1) is injective. That is im-

possible, since 7 (S', (1,0)) = Z and m (B((0,0), 1), (1, 0)) 0.

9.2 Homotopy Equivalence

Definition 9.6. Let X,Y be a topological spaces, and f: X — Y, g:Y — X continuous functions.
Suppose that go f : X — X is homotopic to the identity map of X, and fog:Y — Y to the identity
map of Y. Then, the functions f and g are said to be homotopy equivalent, and each is called a
homotopy inverse of the other.

Proposition 9.7. Let X,Y be topological spaces, and F : X x [0, 1] — Y a homotopy between contin-
uous functions f = F(.,0) and g = F(., 1). Take x € X, and consider the path h = F (x, .) from f(x)
to g(x). Then, the following diagram is commutative:

7 (X, x) *>7171(Yf (x))

D

m (Y, g(x))

Proof. Let!:[0,1] — X be aloop based at x. Consider the continuous function
L:[0,1]x[0,1] =Y, (s,1)— F(I(s),1),

and the points p; = (0,0), p» = (1,0), p3 = (0, 1), ps = (1, 1). Denoting L;; the standard parametri-
sation of L restricted to the edge from p; to p;, where i, j € {1,2,3,4} and i < j, we get Lj» x Lo =,
L4 and L3 * L34 ~) L4 by Lemma hence Ly * Log =, L13 % L34. Remark that Li; = fol,
L13 = L24 = h, L34 = gol, hence
folxh=hxgol
[fol][h] = [h]x[gol]
(] [f o 1]+ [h] = [g 1]
ho £.([1]) = g.([1]).
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Corollary 9.8. Let X be a topological space, and f : X — X a continuous function that is homotopic
to the identity map of X. Then, for any x € X, the function f, : m(X,x) — m (X  f (x)) is a group
isomorphism.

Proof. LetF :X x [0, 1] — X be a homotopy between the identity map F(.,0) =iof X and F(., 1) = f,
and consider the path & = F(x, .) from x to f(x). Proposition|9.7|implies that f, = hoi, = h, which is
a isomorphism from ; (X, x) to 7 (X, f(x)) by Proposition O

Lemma 9.9. Let A,B,C,D be sets, and f, g, h functions represented by the following diagram:
ALipSclp.
If go f is bijective and ho g is injective, then f is bijective.

Proof. As go f is injective, then f is injective.
Take b € B. As go f is surjective, there exists a € A such that go f(a) = g(b). Remark that g is also
injective since h o g is injective. The injectivity of g implies f(a) = b, hence h is surjective. O

Theorem 9.10. Let XY be topological spaces, x € X, and f : X — Y a continuous function. If there
exists a continuous function g : Y — X homotopy equivalent to f, then f. : m (X, x) — m (Y, f(x)) is
an isomorphism.

Proof. Consider the following sequence of homomorphisms:

1 (X, x) Lo m (Y, £(x) 25 m (X, go f(x)) Lo m (¥, fogo f(x)).

We know from Corollary 0.8]that g, o f, and f; o g, are isomorphisms. Morevore, we can deduce from
Lemma[9.9[that f, is bijective. O
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Chapter 10

Singular Homology

10.1 Singular Homology

Proposition 10.1. Let ug,uy,...,u, € R". The following conditions are equivalent:

(i) the p vectors ugui,uout, . ..uou, are linearly independent,

(ii) if'$0,81,-..,8p,t0,t1,...,t, € R such that

P p p p
ZS,'M,’ = ZZ‘,’M,’ and ZS,' = Zti’
i=0 i=0 i=0 i=0

then s; =t; fori € {0,1,...,p}.

P P P
Proof. ( (if) - If Zs Ui = Zt,-u,- and Zs,- = Zt,-, then
i=0 i=0 i=0

]
I
.M"c

—~
e

|
<
SN—
&

i
o

(si = ti)u; — (Zp:(si —fi)>u0

i=0

Il
™

I
=)

)4
= Z(S[ — t[)(u,- — l/t()).
i=1
As uoul,uouz, ...uou, are linearly independent, it follows that s; = ¢#; for i € {1,...,p}. Moreover,
Z 5= Ztl implies 5o = f0.
i=0
)4
(If Zt, u; — =0, then Zt,u, = (Zt,-) uo. Hence, we must have t;j =---=1¢,=0. [

i=1

Definition 10.2. Letn € N, p € {1,...,n}, and ug,uy,...,u, € R". A p-simplex [ug,u,...,u,] is a
convex hull

p
{l0u0+l1u1 + - F Uy ’ to,t1,...,tp ER,, Zti = 1}
i=0

. ° N . .
with ordered vertices uo,u, ..., u, such that the p vectors uoui, uous, . . .upuy, are linearly independent.
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Corollary 10.3. If [ug,u1,...,up) is a p-simplex in R", then every point of [ug,u1, . ..,u,| has a distinct

P P
unique representation in the form Z tiuj, with to,ty,...,t, € Ry and Z t;=1.
i=0 i=0

)4
Proof. It is Proposition 10.1{with the conditions fy,11,...,t, € R4 and Zt,- =1. ]
i=0

Example. The standard n-simplex is convex hull

n
A" = {(to,tl,...,tn) e RM! 10,11,...,tp ER,, Zt,- = 1} = [eo,e1,-..,en)
i=0
of the ordered vertices ¢ = (0,...,0), e; = (1,0,...,0), ..., e, = (0,...,0,1).
Definition 10.4. Let X be a topological space. A singular n-simplex in X is a continuous function
o:A"—X.
Denote S, (X) the set of singular n-simplices in X. Let C,(X) be the free abelian group with basis

Su(X), that is,
CX) = { L nao,

acA

#AEN, n, €7, 06, € S,,(X)}.

Elements of C,(X) are called singular n-chains.

Definition 10.5. Let X be a topological space, and i € {0,1,...,n}. The i face operator is the
homomorphism

9;: Cy(X) = Cu1 (X)), Znaoa — Znaca\[eo,el,...,é,-,...,en],

acA acA

where [eg,e1,...,é;,...,e,] is the n — 1-simplex with vertices e, ...,e;_1,€i+1,-..,€p.
The boundary operator is the homomorphism

d:Co(X) = Cp1(X), G|—>Z

Proposition 10.6. Let X be a topological space. The following composition is zero:

Co(X) L5 Co 1 (X) -2 Cua(X).

Proof. For 6 € C,(X), we have d(0) = Z(—l)ic\[eo, .ey&iy...,ey]. Remark that

i=0
i—1 ) n )
d6|leo, ... éi,-...en) = Y (—=1)/0l[eo,....¢j,....é1,....en]+ Y (=1)"'Oleq,....é1,...,6),....en).
j=0 j=i+1
Then,
n i—1
808 ZZ I+JG‘ 60,...,é,' -I—Z Z Hr] 16’60, ,é\l‘,...7é/,...,en]
i=0j=0 i=0 j=i+1
= Y (=D"olleo,-. 8, s61, e+ Y, (=) olen, ... 61,85, e
i,j€{0,...n} i,j€{0,...,n}
> i<j
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Definition 10.7. Let X be a topological space. The singular complex C,(X) of X is the homomor-
phism sequence

L (X)L (X)L G () L L a(x) L Gox) L.
The group of singular n-cycles of X is Z, (X ) :={0 € Cy(X) | d(6) =0}. The group of singular
n-boundaries of X is B,(X) := {6 € C,(X) | It € Cu11(X), d(7) = G} The quotient group

H,(X) = Z,(X)/By(X)
is the n™ singular homology group of X.

Example. Ifx is a point, then Hy({x}) = Z, and H, ({x}) = 0 for n € N. Indeed, for every nonnegative
integer n, G, ({x}) = Z{c}, where 0 : A" — {x}, 1 — x. Moreover, for every zo € C, ({x}),

n n

9(z0) = Y (~1)'9(z0) = Y (~1)’z0 = {

i=0 i=0

zo ifnisevenandn #0,
0 ifnisodd.

The singular complex of {x} is then
7o) Lmton, 7651 % 7o) L, 7061 % z2{o) 25 0.
Hence,
+ 2o({x}) = Z{o} and By({x}) = {0}, implying Ho({x}) = Z{c}/{0} = Z,
e ifnisevenand n # 0, Z,({x}) = {0} and B, ({x}) = {0}, then H, ({x}) = {0}/{0} = {0},
* ifnisodd, Z,({x}) = Z{c} and B, ({x}) = Z{c}, then H,({x}) = Z{o}/Z{c} = {0}.
Proposition 10.8. Let X be a topological space. Suppose that X = |_|X,-, where X; is a path compo-

il
nent. Then,

X) =P H(X)

icl

Proof. Let ¢ be a singular n-simplex in X. Since A" is path connected then o(A") is path con-

nected, meaning that o(A") C X; for some i € I. Then C,( EBC . Moreover, 9 (C,(X;)) C
icl

Cu—1(X;), hence Z,( @Z ) and B, (X @B . Consider the natural homomorphism

161 iel
p: EBZ ) — EBZ X;i), (0i)ier — (6;)ic; Which the canonical projection on each coordi-

icl icl
nate. It is obviously surjective, and ker p = @B ). Therefore
icl
— D7) D Ba(X) = D7 (%) /Ba(X:) = D Hu(X)
icl icl icl icl
]
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Proposition 10.9. Let X be a topological space. Suppose that X = |_|X,-, where X; is a path compo-
il
nent. Then,
#1 times

H(X)2 QLOLOLD -

Proof. Define a homomorphism 4 : Cy(X;) — Z, Z njoj— Z n;. It is obviously surjective as X; is
jeJ jeJ
assumed to be nonempty. For every ¢ € S (X, ) we have hod(0) = h(o|[e)] — l[eo]) =1—1=0.
It follows that {7 € Cy(X;) | 3o € C1(X;), d(0) = T} = Bo(X;) C kerh.
Now, let Z n;o; € Co(X;) such that i ( Z anj> = 0. Take a point x € X; and note that, for each j € J,
jel jeJ
there exists a singular 1-simplex 7; : [eg, 1] — X; such that 7j(eg) = 6(e) and 7j(e;) = x. We have

8(211]-7]-) = ancrj— (Zm)q) = ancj with ¢ : [eg] = X;, eo — x.
jer jes jer jer
Hence ker C {0 € Co(X; ’ 3t € C1(Xi), (1) =0} = Bo(X;).
We deduce that By(X;) = kerh Therefore
Ho(X:) = Zo(X:)/Bo(X:) = Co(X;)/ kerh = h(Cy(X;)) = Z.
#I times

Finally, we get Hy(X) = --- G Z®Z S Z G - - - by Proposition|10.8 O

10.2 Homotopy Invariance

Definition 10.10. Let X,Y be topological spaces, and f : X — Y a continuous function. The homo-
morphism induced on singular n-chains by f is

fi:Cu(X) = Co(Y), Y naGa— Y nafoo,.

acA acA

Lemma 10.11. Let X,Y be topological spaces, and [ : X — Y a continuous function. The following
diagram is commutative:

d 9 d d
= G (X)) —— C(X) —— G (X)) —— -

[
s Gt (V) 2 G(Y) —2 G (Y) 2 -

Proof. Let o € C,(X). We have

fi0d(0) :fﬁ(i(—l)’b“eo,el,...,éi,...,en]>

i=0
n
=Y (1) fioollev.e1,-.. ... el
i=0
= (fﬁOO').
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Proposition 10.12. Let X,Y be topological spaces, and f : X — Y a continuous function. Then, f;
induces a homomorphism

fo 1 Hy(X) = H,(Y), ©o+Buy(X) fi(c)+Bu(Y).

Proof. Using Lemma|[T10.11}

* If 6 € Z,(X), then d(fi(0)) = fs(d(0)) = = 0,50 f2(Za(X)) C Z,(Y),

¢ if 0 € Cup1(X), then f3(9(0)) = 9 (fi( ) sofﬁ( 2(X)) CBu(Y).
Hence, for every ¢ + B, (X) € H,(X), (0' X)) = fﬁ( )+ B,(Y) € H,(Y) is well-defined. And
fe(o+T+By(X)) = fy(0+7) +Ba(Y ) fi(o >+fﬁ() By(Y) = f.(0+Bu(X)) + fu (7 +Bu(X)).

O]

Definition 10.13. Let X,Y be topological spaces, and f : X — Y a continuous function. The homo-
morphism induced on homology groups by f is

fo Hy(X) = H,(Y), 0+Bu(X) fi(c)+B,(Y).

Proposition 10.14. Let X,Y,Z be topological spaces, and f : X — Y, g : Y — Z continuous functions.
In particular, letix : X — X and i : H,(X) — H,(X) be the identity maps of X and H,(X) respectively.
Then,

(i) (gof)x=gx0fo
(ii) (ix)s=1.
Proof. (i) : If Z nq,0, € Cy(X), we have

acA

o Tnon) = o Lnafoa) = ¥ magefoc = (g0 ( ¥ nacs).

acA acA acA acA

Hence, if 0 + B, (X) € H,(X),

80 f+(0+Bu(X)) = g (fi(0) + Bu(Y))
= g:0 f1(0) +Bu(2)
= (g0 f):(0) +Bu(Z)
gof*(G—l-B )

(ii) : For 6+ B,(X) € Hy(X), (ix)« (0 4+ Bu(X)) = (ix)1(0) + Ba(X) = 0 + B,(X). O
For a nonnegative integer n, set A" x {0} := [e0,€Y,...,e% and A" x {1} :=[e},el,...,e}] such that ¢?

and e! have the same image e; under the projection A" x {0, 1} — A", where i € {0, 1,...,n}.

Proposition 10.15. Let n be a nonnegative integer. Then

n

A" x [0, 1] = U[eg,...,e?,l,e?,eil,ellﬂ,...,e,ll].
i=0
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Proof. Letu—Zt +Zt T ?1,e?,e},el]+1, el fu= (Ao, A1,..., Aur1), then
‘]7

Z?Lk:Zt?+it}:1 and 7Ln+1:it}€[0,l].
J=i J=i
0

0 0,1 ,1 1
Hence [eg,...,e; |,€;,¢;,ei ,...,e,] CA"x[0,1].

Now, take (A9, A1,..., 1) € A" X [0, 1]. Leti:max{j €{0,1,...,n} ) le > 7Ln+1}. Then,
=i

i—1 n
(Ao, 2o 1) = X A+ (A=A + YAy el (A — Zz)e + Y Al

j=0 j=i Jj=i+1

n
which belongs to [¢}),...,e?,e!,... el]. Hence A" x [0, 1] € | J[e),....e{.¢; ..., en]. O

rn
i=0

Definition 10.16. Let X,Y be topological spaces, id : [0, 1] — [0, 1] the identity map, and F : X X
[0,1] — Y a continuous function. The composition F o (0 x id) : A" x [0,1] = X x[0,1] = Y is
well-defined and the prism operator of F is the function

P:Cy(X) = Cuia1(Y), G»—>Z YiFo(oxid)|[e],...,e" |,e el e,1+1,...,e,ll].

1791

Proposition 10.17. Let XY be topological spaces, f : X — Y, g : X — Y continuous functions, and
F :X x[0, 1] = Y a homotopy between f and g. Then,

aoP:gﬁ—fﬁ—Poa.
Proof. Denote

Fi0 Fo(o xid)|[e,.. ,eQ,...,e?,e!...,e,ll}andFi}j:F o(oxid)|[ed,...,e0 el ... el ... el].

19

We have

I
= =

doP(0)

o

( 1)FO(Gde)|[e07 ,6?_1,6?,61-1,6}4_1,...,el])
<f1>"a(F (o xid)l[ehs. el 1 elselelyrsensey])
l O i+1 1
(Z E Z JHEY)
A 0 i+1 1
_ i+ i+ j+
SDID MERURS 3 NEHIA Y

0

I
M:

Il
=]

i=0j=0 i=0 j=i
0 01,1 1 _ 7,0 0,0 1 1 el 1 _

Remark that [ef, ..., ¢),el,¢},\,....e,] = [€],.... e}, el | el |, 3], which implies F\, = FY ;.|
Hence

n i—1 0

z+ l+'+l 1 1
2oP(0) =i+ Y T (- EY+ Y Y (CIE
i=0j=0 i=0 j=i+1
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Note that F00 =Fo(0ox zd)|[e0,e(1),e}, el =giand F, = Fo (o X i)|[68,...,e2_1,62,e}1] = fi.
Moreover,
n
Pod(0) = P( Y (~1)0llev,....é.- - en))
i=0
n o | 1i—l 0
=YL= Y (-V'F; Z IR NCHE
i=0 j=it1 J=0
D CIEEES IR
_ (—1)EY + 1)HEL.
i=0 j=0 i=0 j=i+1 b
Therefore d oP = gy —Pod — fi. O]

Theorem 10.18. Ler XY be topological spaces, and f: X — Y, g : X — Y continuous functions. If f
and g are homotopic, then f, = g..

Proof. Let P be the prism operator of a homotopy between f and g. If o € Z,(X), we then know
from Proposition {10.17|that g4(6) — fi(0) = d o P(0) + Pod(0) = d o P(0), since d(o) = 0. Thus
g4(o) — fi(o) € B,(Y), meaning that g4(0) +B,(Y) = fi(0) +B,(Y). So, forall 6 +B,(X) € H,(X),

g*(G"’Bn(X)) =8:(0)+B,(Y) = fi(0) +Bu(Y) = f*(G+Bn(X))'
O

Corollary 10.19. Let X,Y be topological spaces, and f : X — Y a continuous function. If f is homo-
topy equivalent some function, then f, : H,(X) — H,(Y) is an isomorphism.

Proof. Letg:Y — X be a function homotopy equivalent to f. Moreover, let ix, iy, iy, (x), g, (v) be the
identity maps of X, Y, H,(X), H, (Y ) respectively. Using Proposition|10.14|and Theorem|10.18] we get

* gofi= (gOf)* = (iX)* = iH,,(X)’
* fiogi=(fog)s=(iv)s= IH,(v)-
Hence, g. = f, 1 which implies that f; is an isomorphism. O

Example. If X is a convex set in R", then Hy(X) = Z, and H,(X) = 0 for n € N. Indeed, if a € X, the
function
F:Xx[0,1] >X, (x¢)—ta+(1—1)x

is a deformation retraction of X onto {a}. Consider both functions
f:X—{a},x—a and g:{a} =X, x—x
Denoting ix, i, the identity maps of X and {a} respectively, we see that
* go f = f which is homotopic to ix by the deformation retraction F,
e fog=i {a}-

Hence, f and g are homotopy equivalent. We deduce from Corollary|10.19|that f, : H,(X) — H, ({a})
is an isomorphism.
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10.3 Relative Homology Groups

Definition 10.20. Let X be a topological space, and A C X. The free abelian subgroup C,(A) is

Co(A) = {Zn,-c,- € Cy(X) ‘ Gi(A") C A}.

icl
The relative n-chains are the elements of the quotient group C, (X, A) := C,(X)/Cn(A).

Lemma 10.21. Let X be a topological space, and A C X. The boundary operator 9 : C,(X) —
Cu—1(X) induces the quotient boundary operator

0:Ci(X,A) = Co1(X,A), 0+Cu(A)—d(0)+Cyi(A).
Proof. Let T =Y n;7; € C,(A) and j € {0,1,...,n}. Since Tl[eg,e1,...,),...,e,) (A" ') C A, then
iel
9(t) € C,—1(A). Hence 9 (Cy(A)) € Cy—1(A), and 0 :Cu(X,A) = C,_1(X, A) is well-defined. O

Definition 10.22. Let X be a topological space, and A C X. The relative complex C,(X,A) of X
relative to A is

L Gt (X, 4) 5 Gu(X, A) L Gt (X, 4) 25 - L5 0 (X, A) -5 Go(X, 4) 25 0.
The group of relative n-cycles of X relative to A is
Zy(X,A) := {0+ Cu(A) € Ci(X,A) | d(0) € Cui(A) }.
The group of relative n-boundaries of X relative to A is
By(X,A) :={0+Cy(A) € Cu(X,A) | IT € Cui1(X), v €Cy(A), (1) =0+ v}

The quotient group
H,(X,A)=Z,(X,A)/Bn(X,A)

is the n'™ relative homology group of X relative to A.
Denote f: (X,A) — (Y, B) a function f: X — Y such that AC X,BCY,and f(A) CB.

Lemma 10.23. Let X,Y be topological spaces, AC X, BCY, and f:(X,A) — (Y, B) a continuous
function. The homomorphism f; : Co(X) — C,(Y) induces the homomorphism on relative n-chains

fi:Cu(X,A) = Co(Y,B), 0+Cu(A) > fi(0)+Cy(B).

Proof. 1f Y nio; € Gy(A), then fy( L micy) = Y nif 0 0 € Cu(B). Hence f,(C,(4)) € Gy (B), and
icl icl icl
fi 1 Co(X, A) — Cu(Y, B) is well-defined. O
Lemma 10.24. Let X,Y be topological spaces, AC X, BCY, and f: (X,A) — (Y, B) a continuous
function. The homomorphism f, : H,(X) — H,(Y) induces the homomorphism on relative homology
groups
fx 1 Hy(X,A) = H,(Y,B), 0©+B,(X,A)— fi(c)+B,(Y,B).

Proof. We have:
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* Ifo+Cy(A) € Z,(X, A), then
9(fn(6+Cn(A>)) = 9(fi(0) +Cu(B)) = 9(f4(0)) + 3 (Cu(B)) = fs(9(0)) + 9 (Cu(B))-

Since d(0) € C,—1(A), then f;(9(0)) + 9 (Cu(B)) C Co—1(B), s0 fi(Zu(X,A)) C Z,(Y, B).

e Ifo +Cn+1(A) S Cn+1(X, A), then

fu<8(G+Cn+1(A))) - 8(fﬁ(G+Cn+1(A))> = 9(fi(0) +Cui1(B)),

hence f;(B,(X,A)) C B,(Y, B).
Like in Proposition|10.12] we deduce that f; induces a homomorphism f : H,(X,A) — H,(Y, B). [

Proposition 10.25. Let X,Y be topological spaces, AC X, BCY, and f: (X,A) — (Y,B), g:
(X,A) — (Y, B) continuous functions. Suppose that there exists a homotopy F : X x [0, 1] = Y be-
tween f and g such that

vVt €0,1], F(A,t) CB.

Then f, : H,(X,A) — H,(Y,B) = ¢, : H,(X,A) — H,(Y, B).

Proof. If o € C,(X) such that o(A") C A, we get the composition Fo (o xid) : A" x [0, 1] = A x
[0, 1] — B. The prism operator P of F then takes C,(A) to C,+1(B). Hence, it induces a relative prism
operator

P:Cy(X,A) = Cp1(Y,B), 06+Cy(A)— P(6)+Cpi1(B).

Besides, for every 6 +C,(A) € C,(X, A), doP(c+Cy(A)) = Q(P(G) +Cyt1(B)) =doP(0)+Cy(B)
and P09 (6 +Cy(A)) = P(9(6) +Cu-1(A)) = Pod(0) +Cu(B). So, by Proposition[10.17}

doP(0+Cy(A)) +P0d(0+Cy(A)) =9 0P(6)+Pod(c)+Cy(B)
= 8:(0) = fi(0) +Cu(B)
=4:(0+GCi(A)) — fi(o+Cu(4)).

If 6+ Cy(A) € Z,(X, A), since (06 +Cy(A)) = Cy_1(A), then
4:(0+Ca(A)) — fo(0 +Ca(A)) = Do P(0+Cu(A)).

Thus g4 (6 +C,(A)) — /i (0 +Ca(A)) € B, (Y, B), meaning that g;(0) + B, (Y, B) = fi(0) +B,(Y, B).
So, forall 6+ B,(X,A) € H,(X,A),

$.(0+B,(X,A)) = g:(0) +Bu(Y, B) = f:(0) + Bu(Y, B) = f. (0 +Bu(X,A)).

55



H. Randriamaro TOPOLOGY

56



Bibliography

[1] J. Dixmier, General Topology, Undergrad. Texts Math., 1984.

[2] A. Hatcher, Algebraic Topology, Cambridge University Press, 2001.
[3] M. Manetti, Topology, Unitext 91, 2015.

[4] J. Munkres, Topology, Prentice Hall, 2000.

[5] H. Queffélec, Topologie, Dunod, 2012.

[6] T. Tom Dieck, Algebraic Topology, EMS Textbk. Math., 2008.

[7] J. Vick, Homology Theory, Grad. Texts in Math. 145, 1994,

57



Index

Adherence
Value, [§]
Adherent, [6]

Basepoint, [31]
Basis, (]
Boundary, [3]

Chain

Singular, [#4]
Closed, 3| 23]
Closure, [6]
Compact, [T3]

Locally, [T§]
Component

Connected, 21]

Path,22]
Connected, [19]

Locally, 21]

Path,[22]

Path, 20|

Simply, [31]

Subset, [T9]
Continuous, [9]
Covered

Evenly, [33]
Covering, [I5]

Map, [33|

Deformation
Retract, [40]
Retraction, 0|

Dense, [6]

Diameter, 24]

Distance, 24]

Extremity, 20|

Filter,

Filter Base, 7]

Group
Fundamental, [31]

Homeomorphism, [T0]
Homomorphism
Induced, 32
Homotopic,
Path, 29]

Homotopy, [40]
Equivalent, 4]

Inverse, [41]
Path, 29]

Interior, 3]

Lifting, [34]
Correspondence,
Limit, [7]

Loop, 37]

Metric, 23|

Neighborhood, [
Fundamental System, [3]
Nulhomotopic,

Open. 3 [23]
Ball,[23]

Operator
Boundary, 44]

Face, 44
Origin, 20|

Path, [20]

Retract, [40]
Retraction,

Section, [33]
Separated, [6]
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Sequence

Cauchy, [26]
Simplex, {3
Singular, [#4]
Standard, [44]
Slice, 33|
Space
Metric, 23|
Complete, [26]
Topological, 3]
Subpace
Metric, 23|
Subspace

Topological, [TT]

Topological
Space
Product, [T3]
Quotient, [T4]

Topology, [3]
Discrete, 3]

Finite Complement, [3]

Generated, [4]
Induced, [TT]
Product, [13]

Quotient, [T4]
Trivial, 3]

Vertex, 3]

59



	I General Topology
	Topological Spaces
	Topological Spaces
	Neighborhoods
	Interior
	Closure
	Separated Topological Spaces

	Limit and Continuity
	Limits
	Adherence Values
	Continuity
	Homeomorphisms

	Construction of Topological Spaces
	Topological Subspaces
	Products of Topological Spaces
	Quotient Spaces

	Compact Spaces
	Compact Spaces
	Properties of Compact Spaces
	Locally Compact Spaces

	Connected Spaces
	Connected Spaces
	Connected Components
	Locally Connected Spaces
	Path Connected Spaces
	Locally Path-Connected Spaces

	Metric Spaces
	Metric Spaces
	Continuity of the Metric
	Sequences in Metric Spaces
	Complete Metric Spaces


	II Algebraic Topology
	Fundamental Groups
	Homotopy of Paths
	Fundamental Groups
	The Fundamental Group of Sn

	Covering Spaces
	Covering Maps
	Function Liftings

	Homotopy
	Homotopy of Functions
	Homotopy Equivalence

	Singular Homology
	Singular Homology
	Homotopy Invariance
	Relative Homology Groups



