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Chapter 1

Topological Spaces

1.1 Topological Spaces

Definition 1.1. One calls topological space a set X equipped with a family U of subsets of X , called
the open sets of X , satisfying the following conditions:

(i) the subsets ∅ and X of X are open,

(ii) every union of open subsets of X is open,

(iii) every finite intersection of open subsets of X is open.

One says that U defines a topology on X .

Example. Consider a set X . The collection of all subsets of X is a topology on X , and is called the
discrete topology on X . The collection consisting of X and ∅ is also a topology, and is called the
trivial topology on X .

Example. Consider a set X . Let U f be the collection of all subsets A of X such that X \A is either
finite or is X . Then, U f is a topology called the finite complement topology on X . Both X and ∅
are in U f , since X \X = ∅ is finite and X \∅ = X . If {Ai}i∈I is a family of nonempty elements of
U f , since X \

⋃
i∈I

Ai =
⋂
i∈I

(X \Ai) is finite, then
⋃
i∈I

Ai ∈U f . In case I is finite, X \
⋂
i∈I

Ai =
⋃
i∈I

(X \Ai) is

consequently finite, then
⋂
i∈I

Ai ∈U f .

Definition 1.2. Let X be a topological space, and A⊆ X . One says that A is closed if X \A is open.

Proposition 1.3. Let X be a topological space:

(i) the subsets ∅ and X of X are closed,

(ii) every intersection of closed subsets of X is closed,

(iii) every finite union of closed subsets of X is closed.

Proof. The subsets ∅ and X are evidently closed by passage to complements. Let C a family of
closed subsets of X . Since X \

⋂
B∈C

B =
⋃

B∈C
(X \B) and X \B is open, then X \

⋂
B∈C

B is open and
⋂

B∈C
B

3
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is consequently closed. If the family C is finite, since X \
⋃

B∈C
B =

⋂
B∈C

(X \B) and
⋂

B∈C
(X \B) is open,

then
⋃

B∈C
B is closed.

Definition 1.4. If X is a set, a basis for a topology on X is a collection B of subsets of X such that

(i) for each x ∈ X , there exists an element B ∈B containing x,

(ii) if x belongs to the intersection of two elements B1,B2 ∈B, then there exists B ∈B such that
x ∈ B and B⊆ B1∩B2.

If B satisfies both conditions, then one defines the topology generated by B as follows: A subset U
of X is said to be open in X if, for each x ∈U , there exists B ∈B such that x ∈ B and B⊆U .

Proposition 1.5. Let X be a set, and B a basis for a topology U on X. Then, U equals the collection
formed by all unions of elements in B.

Proof. As U is a topology, any union of elements in B clearly belongs to U . Conversely, given
U ∈ U , for each x ∈ U , there exists Bx ∈ B such that x ∈ Bx and Bx ⊆ U as B is a basis. So⋃
x∈U

Bx ⊆U , and we also have U ⊆
⋃

x∈U

Bx since
⋃

x∈U

Bx contains every element of U .

Proposition 1.6. Let X be a set equipped with a topology U . Suppose that C is a collection of open
sets such that, for each U ∈U and each x ∈U, there exists C ∈ C such that x ∈C and C ⊆U. Then,
C is a basis for U .

Proof. We first prove that C is a basis. For the first condition, given x ∈ X , since X ∈U , then there
exists C ∈ C such that x ∈C and C ⊆ C . For the second condition, let x ∈C1∩C2 where C1,C2 ∈ C .
Since C1 and C2 are open, so is C1∩C2, then there exists C ∈ C such that x ∈C and C ⊆C1∩C2.

We now prove that the topology T generated by C is U . If U ∈U and x∈U , there exists C ∈C such
that x ∈C and C ⊆U , and consequently U ∈T by definition. Conversely, if T ∈T , then T equals a
union of elements in C from Proposition 1.5. As C ⊆U and U is a topology, then T ∈U .

1.2 Neighborhoods

Definition 1.7. Let X be a topological space, and x ∈ X . A subset V of X is called a neighborhood
of x in X if there exists an open subset A of X such that x ∈ A and A⊆V .

Proposition 1.8. Let X be a topological space, and x ∈ X.

(i) If V and V ′ are neighborhoods of x, then V ∩V ′ is a neighborhood of x.

(ii) If V is a neighborhood of x, and W a subset such that V ⊆W, then W is a neighborhood of x.

Proof. There exists open subsets U,U ′ containing x such that U ⊆ V and U ′ ⊆ V ′. So, U ∩U ′ is an
open subset of X containing x with the property U ∩U ′ ⊆ V ∩V ′. If V ⊆W , then U ⊆W , and W is
obviously a neighborhood of x.

Proposition 1.9. Let X be a topological space, and A⊆ X. These conditions are equivalent:

(i) A is open,

4
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(ii) A is a neighborhood of each of its points.

Proof. (i)⇒ (ii) : For a point x of A, we obviously have x ∈ A⊆ A, so A is a neighborhood of x.

(ii)⇒ (i) : For every x ∈ A, there exists an open subset Ax of X containing x such that that Ax ⊆ A.
Then, the union

⋃
x∈A

Ax is open, and is included in A. Since each point of A is contained in
⋃
x∈A

Ax, then

A⊆
⋃
x∈A

Ax. Thus A =
⋃
x∈A

Ax, and A is consequently open.

Definition 1.10. Let X be a topological space, and x ∈ X . One calls fundamental system of neigh-
borhoods of x any family {Vi}i∈I of neighborhoods of x such that every neighborhood of x contains
one of the Vi.

Example. Let X be a topological space, and x ∈ X . The set of all open subsets of X containing x is a
fundamental system of neighborhoods of x.

1.3 Interior

Definition 1.11. Let X be a topological space, A⊆ X , and x ∈ X . The point x is interior to A if A is a
neighborhood of x in X . The set of all points interior to A is called the interior of A and denoted A◦.

Proposition 1.12. Let X be a topological space, and A a subset of X. Then A◦ is the largest open set
of X contained in A.

Proof. Let U be an open subset of X contained in A. If x ∈U , then A is neighborhood of x, therefore
x ∈ A◦, and consequently U ⊆ A◦. So, every open subset contained in A is included in A◦.
Now, if x ∈ A◦, there exists an open subset B such that x ∈ B and B⊆ A. Then B⊆ A◦ by the first part
of the proof, thus A◦ is a neighborhood of x. From Proposition 1.9, we deduce that A◦ is open.

Proposition 1.13. Let X be a topological space, and A⊆ X. These conditions are equivalent:

(i) A is open,

(ii) A = A◦.

Proof. (i)⇒ (ii) : If A is open, then A = A◦ from Proposition 1.12.

(ii)⇒ (i) : If A = A◦, then A is open since A◦ is open.

Proposition 1.14. Let X be a topological space, and A,B⊆ X. Then (A∩B)◦ = A◦∩B◦.

Proof. It is clear that (A∩B)◦ ⊆ A◦ and (A∩B)◦ ⊆ B◦, hence (A∩B)◦ ⊆ A◦∩B◦.
One has A◦ ⊆ A and B◦ ⊆ B, therefore A◦∩B◦ ⊆ A∩B. Since A◦∩B◦ is open, then A◦∩B◦ ⊆ (A∩B)◦

from Proposition 1.12.

Definition 1.15. Let X be a topological space, and A ⊆ X . The boundary of A is the closed set
∂A := X \

(
A◦t (X \A)◦

)
.

5
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1.4 Closure

Definition 1.16. Let X be a topological space, A⊆ X , and x ∈ X . One says that x is adherent to A if
every neighborhood of x in X intersects A. The set of all points adherent to A is called the closure of
A and denoted A.

Proposition 1.17. Let X be a topological space, and A⊆ X. Then A = X \ (X \A)◦.

Proof. Take a point x ∈ X . We have x /∈ A if and only if x has a neighborhood disjoint from A if and
only if x ∈ (X \A)◦.

Proposition 1.18. Let X be a topological space, and A,B⊆ X.

(i) A is the smallest closed subset of X containing A.

(ii) A is closed if and only if A = A.

(iii) A∪B = A∪B.

Proof. (i) : The interior (X \A)◦ is the largest open set contained in X \A. Therefore its complement
A is closed and contains A. If B is a closed subset of X containing A, then X \B ⊆ (X \A)◦ = X \A,
and A⊆ B.

(ii) : As A is the smallest closed subset of X containing A, then A is closed if and only if A = A.

(iii) : From Proposition 1.17, we have A∪B = X \
(
X \ (A∪B)

)◦
= X \

(
(X \A)∩ (X \B)

)◦. Using
Proposition 1.14, then A∪B = X \

(
(X \A)◦∩(X \B)◦

)
=
(
X \(X \A)◦

)
∪
(
X \(X \B)◦

)
= A∪B.

Definition 1.19. Let X be a topological space, and A⊆ X . One says A is dense if A = X .

Proposition 1.20. Let X be a topological space, and A⊆ X. These conditions are equivalent:

(i) A is dense,

(ii) (X \A)◦ =∅,

(iii) every nonempty open subset of X intersects A.

Proof. (i)⇒ (ii) : Since X \ (X \A)◦ = A = X , then (X \A)◦ =∅.

(ii)⇒ (iii) : Let U be an open subset that does not intersect A. Therefore U ⊆ (X \A)◦ =∅.

(iii)⇒ (i) : Since every neighborhood of every point of X intersects A, then A = X .

1.5 Separated Topological Spaces

Definition 1.21. A topological space X is said to be separated if any two distinct points of X admit
disjoint neighborhoods.

Proposition 1.22. Let X be a separated topological space, and x ∈ X. Then {x} is closed.

Proof. Take a point y ∈ X \ {x}. There exist neighborhoods V and W of x and y respectively that
are disjoint. In particular, W ⊆ X \ {x}, hence X \ {x} is neighborhood of y. Thus X \ {x} is a
neighborhood of each of its points. We deduce from Proposition 1.9 that X \{x} is open.

6



Chapter 2

Limit and Continuity

2.1 Limits

Definition 2.1. A filter on a set X is a set F formed by nonempty subsets of X satisfying the following
conditions:

(i) if A ∈F and B ∈F , then A∩B ∈F ,

(ii) if A ∈F and if A′ is a subset of X containing A, then A′ ∈F .

Definition 2.2. A filter base on a set X is a set B of nonempty subsets of X such that, if A ∈B and
B ∈B, there exists C ∈B such that C ⊆ A∩B.

Example. Let X be a topological space, and x0 ∈ X . The set V formed by the neighborhoods of x0
is a filter on X . A fundamental system of neighborhoods of x0 is a filter base on X . Let Y ⊆ X , and
assume x0 ∈ Y . The set {Y ∩V | V ∈ V } is a filter on Y .

Example. For x ∈ R, the set of intervals
{
(x− ε,x+ ε)

}
ε∈R∗+

is a filter base on R.

Definition 2.3. Let X be a set equipped with a filter base B, Y a topological space, f : X → Y a
function, and l a point of Y . One says that f tends to l along B if, for every neighborhood V of l in Y ,
there exists B ∈B such that f (B)⊆V .
If X is a topological space, and B the filter formed by the neighborhoods of a point x0 of X , one says
that l is the limit of f along the neighborhood filter of x0, and writes lim

x→x0
f (x) = l.

Proposition 2.4. Let X ,Y be topological spaces, f : X → Y a function, x0 ∈ X, l ∈ Y , {Vi}i∈I a
fundamental system of neighborhoods of x0 in X, and {Wj} j∈J a fundamental system of neighborhoods
of l in Y . The following conditions are equivalent:

(i) lim
x→x0

f (x) = l,

(ii) for every j ∈ J, there exists i ∈ I such that f (Vi)⊆Wj.

Proof. (i)⇒ (ii) : For every j ∈ J, there exists a neighborhood V of x0 such that f (V ) ⊆Wj. By
definition, there exists i ∈ I such that Vi ⊆V . Therefore f (Vi)⊆Wj.

(ii)⇒ (i) : Let W be a neighborhood of l. There exists j ∈ J such that Wi ⊆W . Then, there exists i ∈ I
such that f (Vi)⊆Wj, and consequently f (Vi)⊆W .

7
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Proposition 2.5. Let X be a set equipped with a filter base B, Y a separated topological space, and
f : X → Y a function. If f admits a limit along B, this limit is unique.

Proof. Let l, l′ be distinct limits of f along B. Since Y is separated, there exist disjoint neighborhoods
V and V ′ of l and l′ respectively in Y . There exist B,B′ ∈B such that f (B) ⊆ V and f (B′) ⊆ V ′. By
definition, there exists B′′ ∈B such that B′′ ⊆ B∩B′. Then f (B′′)⊆ f (B)∩ f (B′)⊆V ∩V ′. Since B′′

is nonempty, then f (B′′) 6=∅, and consequently V ∩V ′ 6=∅ which is absurd.

Proposition 2.6. Let X be a set equipped with a filter base B, Y a topological space, f : X → Y a
function, and l ∈ Y . Let X ′ ∈B, and f ′ the restriction of f to X ′. The sets B∩X ′, where B ∈B, form
a filter base B′ on X ′. The following conditions are equivalent:

(i) f tends to l along B,

(ii) f ′ tends to l along B′.

Proof. (i)⇒ (ii) : Let V be a neighborhood of l. There exists B ∈B such that f (B) ⊆ V . Hence
f ′(B∩X ′)⊆V . As B∩X ′B′, then f ′ tends to l along B′.
(ii)⇒ (i) : Let V be a neighborhood of l. There exists B′ ∈ B′ such that f (B′) ⊆ V . But B′ has
the form B∩ X ′ with B ∈ B. Since X ′ ∈ B, there exists B′′ ∈ B such that B′′ ⊆ B∩ X ′. Then,
f (B′′)⊆ f ′(B′)⊆V , and f consequently tends to l along B.

2.2 Adherence Values

Definition 2.7. Let X be a set equipped with a filter base B, Y a topological space, f : X → Y a
function, and l a point of Y . One says that l is an adherence value of f along B if, for every
neighborhood V of l and for every B ∈B, f (B) intersects V .

Example. Consider the function f :R→R, x 7→ {x}. Then, every real number in [0,1) is an adherence
value of f along the filter base

{
(a,+∞)

}
a∈R+

.

Proposition 2.8. Let X be a set equipped with a filter base B, Y a separated topological space,
f : X → Y a function, and l a point of Y . If f tends to l along B, then l is the unique adherence value
of f along B.

Proof. Let V be a neighborhood of l, and B ∈B. There exists B′ ∈B such that f (B′) ⊆ V . Then
B∩B′ 6= ∅, hence f (B∩B′) 6= ∅, and f (B∩B′) ⊆ f (B)∩V . Therefore f (B) intersects V , meaning
that l is an adherence value of f along B.
Let l′ be an adherence value of f along B, assume l′ 6= l. There exist neighborhoods V and V ′ of l and
l′ respectively that are disjoint. There exists B ∈B such that f (B)⊆V . Then f (B)∩V ′ contradicting
the fact that l′ is an adherence value.

Proposition 2.9. Let X be a set equipped with a filter base B, Y a topological space, and f : X → Y
a function. The set formed by the adherence values of f along B is

⋂
B∈B

f (B).

Proof. Let l be an adherence value of f along B, and B ∈B. Every neighborhood of l intersects
f (B). Then l ∈ f (B), and l ∈

⋂
B∈B

f (B).

Let l′ ∈
⋂

B∈B
f (B), V ′ be a neighborhood of l′, and take B ∈B. Since l′ ∈ f (B), then f (B) intersects

V ′, and l′ is an adherence value of f .

8
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2.3 Continuity

Definition 2.10. Let X ,Y be topological spaces, f : X → Y a function, and x0 ∈ X . One says that f is
continuous at x0 if lim

x→x0
f (x) = f (x0). In other words, for every neighborhood V of f (x0), there exists

a neighborhood U of x0 such that f (U)⊆V .

Proposition 2.11. Let X ,Y,Z be topological spaces, f : X → Y and g : Y → Z functions, and x0 ∈ X.
If f is continuous at x0, and g at f (x0), then g◦ f is continuous at x0.

Proof. Let W be a neighborhood of g
(

f (x0)
)

in Z. There exists a neighborhood V of f (x0) in Y such
that g(V ) ⊆W . Moreover, there exists a neighborhood U of x0 in X such that f (U) ⊆ V . Then, U is
neighborhood of U such that g◦ f (U)⊆ g(V )⊆W .

Definition 2.12. Let X ,Y be topological spaces, and f : X → Y a function. One says that f is con-
tinuous on X if f is continuous at every point of X . The set of continuous functions from X into Y is
denoted C (X ,Y ).

Example. Let A,B⊆Rn, and f a rational function such that f is defined on A and f (A) = B. Consider
the basis BA =

{
A∩B(x,r)

∣∣ x ∈ A, r ∈R∗+
}

resp. BB =
{

B∩B(x,r)
∣∣ x ∈ B, r ∈R∗+

}
for a topology

on A resp. B, where B(x,r) is the open n-ball
{

y∈Rn
∣∣ ‖x−y‖2 < r

}
. Take x0 ∈A, and a neighborhood

V of f (x0). There exists an open ball B(x0,r) such that A∩B(x0,r)⊆ f−1(V ). So f
(
A∩B(x0,r)

)
⊆V ,

and f : A→ B is consequently continuous.

Proposition 2.13. Let X ,Y,Z be topological spaces, f ∈ C (X ,Y ), and g ∈ C (Y,Z). Then, we have
g◦ f ∈ C (X ,Z).

Proof. Use Proposition 2.11 for the continuity of g◦ f on every point of X .

Proposition 2.14. Let X ,Y be topological spaces, and f : X→Y a function. The following conditions
are equivalent:

(i) f is continuous,

(ii) f−1(B) is an open subset of X if B is an open subset of Y ,

(iii) f−1(B) is a closed subset of X if B is a closed subset of Y ,

(iv) for every subset A of X, f (A)⊆ f (A).

Proof. (i)⇒ (iv) : Let A⊆ X and x0 ∈ A. Take a neighborhood W of f (x0) in Y . Since f is continuous
at x0, there exists a neighborhood V of x0 in X such that f (V )⊆W . The fact x0 ∈ A implies V ∩A 6=∅.
As f (V ∩A)⊆W ∩ f (A), one sees that W ∩ f (A) 6=∅. Therefore f (x0) ∈ f (A), and f (A)⊆ f (A).

(iv)⇒ (iii) : Let B be a closed subset of Y , and A ∈ f−1(B). Then f (A) ⊆ B, and f (A) ⊆ B from
Proposition 1.18 (i). If x ∈ A, then f (x) ∈ f (A) as f is continuous. Therefore f (x) ∈ B and so x ∈ A.
Thus A = A.

(iii)⇒ (ii) : Let B be an open subset of Y . Then Y \B is closed, and consequently f−1(Y \B) is closed.
But f−1(Y \B) = X \ f−1(B), then f−1(B) is open.

(ii)⇒ (i) : Let x0 ∈ X , and W a neighborhood of f (x0) in Y . There exists an open subset B of Y such
that f (x0) ∈ B ⊆W . If A = f−1(B), then A is open, and A is a neighborhood of x0 as x0 ∈ A. Since
f (A)⊆ B⊆W , then f is continuous at x0.

9
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2.4 Homeomorphisms

Proposition 2.15. Let X ,Y be topological spaces, and f : X → Y a bijective function. The following
conditions are equivalent:

(i) f and f−1 are a continuous,

(ii) a subset A of X is open if and only if f (A) is open in Y ,

(iii) a subset A of X is closed if and only if f (A) is closed in Y .

Proof. (i)⇒ (ii) : Using Proposition 2.14, we deduce from the continuity of f that if f (A) is open
then A is open, and from the continuity of f−1 that if A is open then f (A) is open. One analogously
proves (i)⇒ (iii).

(ii)⇒ (i) : Using Proposition 2.14, “if f (A) is open then A is open” implies that f is continuous, and
“if A is open then f (A) is open” implies that f−1 is continuous. One analogously gets (iii)⇒ (i).

Definition 2.16. Let X ,Y be topological spaces, and f a function from X into Y . One says that f is
a homeomorphism if f is bijective, continuous, and f−1 is continuous. In that case, one says that X
and Y are homeomorphic.

Example. The n-dimensional sphere is the set Sn :=
{
(x1, . . . ,xn+1) ∈ Rn+1

∣∣ x2
1 + · · ·+ x2

n+1 = 1
}

.
Let a = (0, . . . ,0,1) ∈ Sn, and identify Rn with

{
(x1, . . . ,xn+1) ∈ Rn+1

∣∣ xn+1 = 0
}

. We are going
to define a homeomorphism from Sn \ {a} onto Rn. Take a point x = (x1, . . . ,xn+1) ∈ Sn \ {a}. The
line joining a and x is D =

{(
λx1, . . . ,λxn,1+λ (xn+1−1)

)
∈ Rn+1

∣∣∣ λ ∈ R
}

. This line touches Rn

when 1+λ (xn+1− 1) = 0, that is when λ =
1

1− xn+1
. Thus D∩Rn reduces to the point f (x) with

coordinates
x′1 =

x1

1− xn+1
, x′2 =

x2

1− xn+1
, . . . , x′n =

xn

1− xn+1
, x′n+1 = 0. (2.1)

We have thus defined a function f : Sn \ {a} → Rn. We now prove that, given x′ = (x′1, . . . ,x
′
n,0),

there exists one and only one point x = (x1, . . . ,xn+1) in Sn \{a} such that f (x) = x′. The solution of
Equation 2.1 yields the conditions

xi = x′i(1− xn+1) for 1≤ i≤ n, and
n

∑
i=1

x′i
2
(1− xn+1)

2 + x2
n+1 = 1.

After dividing out 1− xn+1, we obtain (x′1
2 + · · ·+ x′n

2)(1− xn+1)−1− xn+1 = 0, which gives

xn+1 =
x′1

2 + · · ·+ x′n
2−1

x′1
2 + · · ·+ x′n

2 +1
and x1 =

2x′1
x′1

2 + · · ·+ x′n
2 +1

, . . . ,xn =
2x′n

x′1
2 + · · ·+ x′n

2 +1
. (2.2)

Thus f : Sn \{a}→ Rn is a bijection. Let BSn\{a} =
{
Sn \{a}∩B(x,r)

∣∣ x ∈ Sn \{a}, r ∈ R∗+
}

resp.
BRn =

{
Rn∩B(x,r)

∣∣ x ∈ Rn, r ∈ R∗+
}

be a basis for a topology on Sn \{a} resp. Rn, where B(x,r)
is the open n+ 1-ball

{
y ∈ Rn+1

∣∣ ‖x− y‖2 < r
}

. We see in Equation 2.1 resp. Equation 2.2 that f
resp. f−1 is a rational function, and is consequently continuous. Hence f is a homeomorphism called
stereographic projection of Sn \{a} onto Rn.
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Chapter 3

Construction of Topological Spaces

3.1 Topological Subspaces

Proposition 3.1. Let X be a topological space, U a topology on X, and Y a subset of X. Then
V = {U ∩Y |U ∈U } is a topology on Y .

Proof. (i) : As ∅,X ∈U , then ∅=∅∩Y ∈ V and Y = X ∩Y ∈ V .

(ii) : Let {Vi}i∈I be a family of subsets belonging to V . For every i ∈ I, there exists Ui ∈U such that
Vi =Ui∩Y . Therefore

⋃
i∈I

Vi =
⋃
i∈I

(Ui∩Y ) =
(⋃

i∈I

Ui

)
∩Y ∈ V .

(iii) : If I is finite, then
⋂
i∈I

Vi =
⋂
i∈I

(Ui∩Y ) =
(⋂

i∈I

Ui

)
∩Y ∈ V .

Definition 3.2. Let X be a topological space, U a topology on X , and Y a subset of X . The set
V = {U ∩Y | U ∈ U } is called the topology induced on Y by the given topology of X . Equipped
with this topology, Y is called a topological subspace of X .

Example. Consider R with the usual topology. As {n} = Z∩
(
n− 1

2
, n+

1
2
)
, every point set {n} of

Z is therefore open. Every subset of Z is the union of point sets, then is open. Thus the topological
subspace Z of R is discrete.

Proposition 3.3. Let X be a topological space, Y a subspace of X, and A a subset of Y . The following
conditions are equivalent:

(i) A is closed in Y ,

(ii) A is the intersection with Y of a closed subset of X.

Proof. (i)⇒ (ii) : The subset Y \A is open in Y . Therefore there exists an open subset U of X such
that Y \A =U ∩Y . Thus A = (X \U)∩Y , and since X \U is closed, we get the result.

(ii)⇒ (i) : Suppose A =V ∩Y where V is closed subset of X . Then Y \A = (X \V )∩Y . Since X \V
is open in X , then Y \A is open in Y , and A is closed in Y .

Proposition 3.4. Let X be a topological space, Y a subspace of X, and x ∈Y . For a subset A of Y , the
following conditions are equivalent:

(i) A is a neighborhood of x in Y ,

11
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(ii) A is the intersection with Y of a neighborhood of x in X.

Proof. (i)⇒ (ii) : There exists an open subset B of Y such that x ∈ B⊆ A. Then there exists an open
subset U of X such that B =U ∩Y . Letting V =U ∪A, we have x ∈V , thus V is a neighborhood of x
in X . Besides, Y ∩V = (Y ∩U)∪ (Y ∩A) = B∪A = A.

(ii)⇒ (i) : Suppose A = Y ∩V where V is a neighborhood of x in X . There exists an open subset U
of X such that x ∈U ⊆ V . Then x ∈ Y ∩U ⊆ Y ⊆ V = A, and since Y ∩U is open in Y , thus A is
neighborhood of x in Y .

Proposition 3.5. Let X be a topological space, and Y ⊆ X. If X is separated, then Y is separated.

Proof. Take two distinct points x,y of Y . There exist disjoint neighborhoods U and V of x and y
respectively in X . We deduce from Proposition 3.4 that U ∩Y and V ∩Y are neighborhoods of x and
y respectively in Y , and they are disjoint.

Proposition 3.6. Let X ,Y,Z be topological spaces such that X ⊇ Y ⊇ Z. Assume U is a topology
on X, V the topology induced by U on Y , and W the topology induced by V on Z. Then W is the
topology induced by U on Z.

Proof. Let W ′ be the topology induced by U on Z.
For W ∈W , there exist V ∈V such that W =V ∩Z, and U ∈U such that V =U∩Y . Then W =U∩Z,
and consequently W ∈W ′.
For W ′ ∈W ′, there exists U ∈U such that W ′ =U ∩Z. If V =U ∩Y , then V ∈ V and W ′ = V ∩Z.
Therefore W ′ ∈W .

Proposition 3.7. Let X be a set equipped with a filter base B, Y a topological space, Y ′ a subspace
of Y , f : X → Y ′ a function, and l a point of Y ′. The following conditions are equivalent:

(i) f tends to l along B relative to Y ′,

(ii) f tends to l along B relative to Y .

Proof. (i)⇒ (ii) : Let V be a neighborhood of l in Y . We know from Proposition 3.4 that V ∩Y ′

is a neighborhood of l in Y ′. There exists B ∈B such that f (B) ⊆ V ∩Y ′. Thus f (B) ⊆ V , and f
consequently tends to l along B relative to Y .

(ii)⇒ (i) : Let V ′ be a neighborhood of l′ in Y ′. From Proposition 3.4, there exists a neighborhood V
of l in Y such that V ∩Y ′ =V ′. Besides, there exists B ∈B such that f (B)⊆V . Since f (X)⊆Y ′, one
has f (B)⊆V ∩Y ′ which is V ′. Thus f tends to l along B relative to Y .

Corollary 3.8. Let X ,Y be topological spaces, Y ′ a subspace of Y , and f : X → Y ′ a function. The
following conditions are equivalent:

(i) f is continuous,

(ii) f , regarded as a function from X into Y , is continuous.

Proof. For every x0 ∈ X , the condition lim
x→x0

f (x) = f (x0) has the same meaning, according to Propo-

sition 3.7 for the neighborhood filter of x0, whether one considers f to have values in Y ′ or in Y .

12
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3.2 Products of Topological Spaces

Proposition 3.9. Let X1, . . . ,Xn be topological spaces equipped with topologies U1, . . . ,Un respec-
tively. The set U formed by any union of elements in U1×·· ·×Un is a topology on X = X1×·· ·×Xn.

Proof. (i) : We have X = X1×·· ·×Xn ∈U1×·· ·×Un and ∅=∅×X2×·· ·×Xn ∈U1×·· ·×Un.

(ii) : From its definition, any union of elements in U is a union of elements in U1×·· ·×Un.

(iii) : Take A,B ∈ U . We have A =
⋃
α∈I

Aα and B =
⋃
β∈J

Bβ with Aα ,Bβ ∈ U1 × ·· · ×Un. Then

A∩B =
⋃
α∈I
β∈J

Aα ∩Bβ . Setting Aα = A1×·· ·×An and Bβ = B1×·· ·×Bn, we get

Aα ∩Bβ = (A1∩B1)×·· ·× (An∩Bn) ∈U1×·· ·×Un.

Definition 3.10. Let X1, . . . ,Xn be topological spaces equipped with topologies U1, . . . ,Un respec-
tively. The topology U on X = X1× ·· ·×Xn formed by any union of elements in U1× ·· ·×Un is
called the product topology of the given topologies on X1, . . . ,Xn. Equipped with this topology, X is
called the product topological space of the topological spaces X1, . . . ,Xn.

Proposition 3.11. Let X = X1×·· ·×Xn be a product of topological spaces, and x = (x1, . . . ,xn) ∈ X.
The sets of the form V1× ·· ·×Vn, where Vi is a neighborhood of xi in Xi, constitute a fundamental
system of neighborhoods of x in X.

Proof. For i ∈ {1, . . . ,n}, let Vi be a neighborhood of xi in Xi. There exists an open subset Ai of Xi

such that xi ∈ Ai ⊆ Vi. Then x ∈ A1× ·· ·×An ⊆ V1× ·· ·×Vn. As A1× ·· ·×An is open in X , thus
V1×·· ·×Vn is a neighborhood of x in X .
Let V be a neighborhood of x in X . There exists an open subset A of X such that x ∈ A ⊆ V . By
definition of the product topology, there exists an open subset Ai such that xi ∈Ai and A1×·· ·×An⊆A.
Thus Ai is a neighborhood of xi and A1×·· ·×An ⊆V .

Proposition 3.12. Let X = X1×·· ·×Xn be a product of topological spaces. If each Xi is separated,
then X is separated.

Proof. Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be two distinct points of X . One has xi 6= yi for at least
one i ∈ {1, . . . ,n}. If x1 6= y1 for example, there exist disjoint neighborhoods U and V of x1 and y1
respectively in X1. Then U ×X2×·· ·×Xn and V ×X2×·· ·×Xn are disjoint neighborhoods of x and
y respectively in X .

Proposition 3.13. Let X be a set equipped with a filter base B, Y = Y1×·· ·×Yn a product of topo-
logical spaces, and l = (l1, . . . , ln) ∈ Y . Consider a function f : X → Y , that is, having the form
x 7→

(
f1(x), . . . , fn(x)

)
, where fi : X → Yi is also a function for i ∈ {1, . . . ,n}. Then, the following

conditions are equivalent:

(i) f tends to l along B,

(ii) fi tends to li along B.

13
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Proof. (i)⇒ (ii) : Let us show, for example, that f1 tends to l1 along B. If V1 is a neighborhood
of l1, then V1×Y2× ·· · ×Yn is a neighborhood of l in Y . Therefore, there exists B ∈ B such that
f (B)⊆V1×Y2×·· ·×Yn. Thus f1(B)⊆V , and f1 consequently tends to l1 along B.
(ii)⇒ (i) : Let V be a neighborhood of l in Y . We know from Proposition 3.11 that there exist
neighborhoods V1, . . . ,Vn of l1, . . . , ln respectively in Y1, . . . ,Yn such that V1×·· ·×Vn ⊆V . Then, there
exist B1, . . . ,Bn ∈B such that f1(B1) ⊆ V1, . . . , fn(Bn) ⊆ Vn. Moreover, there exists B ∈B such that
B⊆ B1∩·· ·∩Bn. Then, f (B)⊆ f1(B1)×·· ·× fn(Bn)⊆V1×·· ·×Vn ⊆V , and f consequently tends
to l along B.

Proposition 3.14. Let X be a topological space, and Y =Y1×·· ·×Yn a product of topological spaces.
Consider a function f : X → Y , that is, having the form x 7→

(
f1(x), . . . , fn(x)

)
, where fi : X → Yi is

also a function for i ∈ {1, . . . ,n}. The following conditions are equivalent:

(i) f is continuous,

(ii) f1, . . . , fn are continuous.

Proof. For every x0 ∈ X , the conditions lim
x→x0

f (x) = f (x0) and lim
x→x0

fi(x) = fi(x0), for i ∈ {1, . . . ,n},
are equivalent by Proposition 3.13 using the neighborhood filter of x0.

3.3 Quotient Spaces

Proposition 3.15. Let X be a topological space with topology U , R an equivalence relation on X, and
c the canonical mapping from X onto X/R. Then the set defined by V :=

{
A⊆ X/R

∣∣ c−1(A) ∈U
}

a topology on X/R.

Proof. The set ∅ and X/R are open in X/R since c−1(∅) = ∅ and c−1(X/R) = X . The two other
conditions follow, for a set {Ai}i∈I included in V , from the equations

c−1
(⋃

i∈I

Ai

)
=
⋃
i∈I

c−1(Ai) and c−1
( n⋂

i=1

Ai

)
=

n⋂
i=1

c−1(Ai).

Definition 3.16. Let X be a topological space with topology U , R an equivalence relation on X , and
c the canonical mapping from X onto X/R. The topology

{
A ⊆ X/R

∣∣ c−1(A) ∈ U
}

on X/R is
called the quotient topology of the topology of X by R. Equipped with this topology, X/R is called
the quotient space of X by R.

Proposition 3.17. Let X be a topological space, R an equivalence relation on X, c the canonical
mapping from X onto X/R, Y a topological space, and f : X/R → Y a function. The following
conditions are equivalent:

(i) f is continuous on X/R,

(ii) the function f ◦ c : X → Y is continuous.

Proof. (i)⇒ (ii) : The mapping c is continuous as, if A is open in X/R, then c−1(A) is open in X .
Since f is also continuous, then f ◦ c is continuous.
(ii)⇒ (i) : Let B be an open subset of Y . Then c−1

(
f−1(B)

)
= ( f ◦ c)−1(B) is open in X . Therefore

f−1(B) is open in X/R by the definition of c. Thus f is continuous from Proposition 2.14.
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Chapter 4

Compact Spaces

4.1 Compact Spaces

Definition 4.1. Let X be a set, and A a subset of X . A family F of subsets included in X is a covering
of A if A⊆

⋃
U∈F

U .

Definition 4.2. A topological space X is compact if, for any family O of open subsets of X covering
X , one can extract from O a finite subfamily that again covers X . By passage to complements, this
definition is equivalent, for any family C of closed subsets of X having empty intersection, to the
existence of a finite subfamily of C having empty intersection.

Proposition 4.3. Let X be a topological space, and A a subspace of X. The following conditions are
equivalent:

(i) A is compact,

(ii) if a family of open subsets of X covers A, one can extract from it a finite subfamily that again
covers A.

Proof. (i)⇒ (ii) : Let {Ui}i∈I be a family of open subsets of X such that A ⊆
⋃
i∈I

Ui. Every Ui ∩A

is open in A, and the family {Ui ∩ A}i∈I covers A, so there exists a finite subset J of I such that
A =

⋃
j∈J

(U j ∩A). The subfamily {U j} j∈J consequently covers A.

(ii)⇒ (i) : Let {Vi}i∈I be a family of open sets of A covering A. For every i ∈ I, there exists an open
subset Ui of X such that Vi =Ui∩A. Then {Ui}i∈I covers A, there consequently exists a finite subset
J of I such that {U j} j∈J covers A. Therefore

⋃
j∈J

Vj = A.

Theorem 4.4 (Borel-Lebesgue). Consider the space R equipped with the usual topology, and let
a,b ∈ R with a≤ b. Then the interval [a,b] is compact.

Proof. Let {Ui}i∈I be a family of open subsets of R covering [a,b], and A be the set of x ∈ [a,b]
such that [a,x] is covered by a finite subfamily of {Ui}i∈I . The set A is nonempty since a ∈ A. It is
contained in [a,b], and therefore has a supremum m in [a,b]. There exists j ∈ I such that m ∈ U j.
Since U j is open in R, there exists ε > 0 such that [m− ε, m+ ε] ⊆U j. As m is the supremum of A,
there exists x ∈ A such that m− ε ≤ x ≤ m. Then [a,x] is covered by a finite subfamily {Uk}k∈K , and
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with [x,m+ ε]⊆U j, we get [a,m+ ε] covered by the finite subfamily {Uk}k∈K ∪{U j}. One sees that
m+ ε ∈ [a,b] contradicts the fact that m is the supremum in [a,b]. Hence m = b, and [a,b] is covered
by a finite subfamily of {Ui}i∈I . We deduce the compactness of [a,b] from Proposition 4.3.

4.2 Properties of Compact Spaces

Proposition 4.5. Let X be a set equipped with a filter base B, Y a compact space, and f : X → Y a
function. Then f admits at least one adherence value along B.

Proof. Consider the family
{

f (B)
}

B∈B of closed subsets of Y , and let A =
⋂

B∈B
f (B). If A =∅, there

exist B1, . . . ,Bn ∈B such that f (B1)∩·· ·∩ f (Bn) =∅ as Y is compact. Now, there exists B ∈B such
that B⊆ B1∩·· ·∩Bn, whence f (B)⊆ f (B1)∩·· ·∩ f (Bn), and consequently f (B1)∩·· ·∩ f (Bn) 6=∅.
This contradiction proves that A 6=∅, so we get the result by using Proposition 2.9.

Proposition 4.6. Let X be a set equipped with a filter base B, Y a compact space, f : X → Y a
function, and A the set of adherence values of f along B. Take an open subset U of Y containing A.
Then, there exists B ∈B such that f (B)⊆U.

Proof. One has (Y \U)∩A = ∅, meaning that (Y \U)∩
⋂

B∈B
f (B) = ∅. Since Y is compact, there

exist B1, . . . ,Bn ∈B such that (Y \U)∩ f (B1)∩·· ·∩ f (Bn) =∅. Furthermore, there exist B∈B such
that B⊆ B1∩·· ·∩Bn. Then (Y \U)∩ f (B) =∅, implying f (B)⊆U .

Corollary 4.7. Let X be a set equipped with a filter base B, Y a compact space, and f : X → Y a
function. If f admits only one adherence value l along B, then f tends to l along B.

Proof. From Proposition 4.6, for any neighborhood V of l, there exists B∈B such that f (B)⊆V .

Proposition 4.8. Let X be a compact space, and A a closed subspace of X. Then A is compact.

Proof. Let {Ai}i∈I be a family of closed subsets of A with empty intersection. We know from Propo-
sition 3.3 that each Ai is the intersection of A with a closed subset of X then is closed in X . Since X is
compact, there exists a finite subfamily {A j} j∈J with empty intersection.

Proposition 4.9. Let X be a separated space, and A a compact subspace of X. Then A is closed in X.

Proof. Take x ∈ X \A. For every y ∈ A, there exist open neighborhoods Uy,Vy of x,y respectively
in X that are disjoint. We have A ⊆

⋃
y∈A

Vy, and since A is compact, there exist y1, . . . ,yn ∈ A such

that A ⊆ Vy1 ∪ ·· · ∪Vyn . The set Uy1 ∩ ·· · ∩Uyn is an open neighborhood of x contained in X \A. It
follows that X \A is neighborhood of each of its points, and is consequently open from Proposition 1.9.
Therefore A is closed in X .

Proposition 4.10. Let X be a separated space.

(i) If A,B are compact subsets of X, then A∪B is compact.

(ii) If {Ai}i∈I is a nonempty family of compact subsets of X, then
⋂
i∈I

Ai is compact.
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Proof. (i) : Let {Ui}i∈I be a covering of A∪B by open subsets of X . There exist finite subsets J1,J2 of
I such that {U j} j∈J1 covers A and {U j} j∈J2 covers B. Then {U j} j∈J1∪J2 covers A∪B, and we deduce
from Proposition 4.3 that A∪B is compact.

(ii) : We know from Proposition 4.9 that each Ai is closed in X . Therefore
⋂
i∈I

Ai is closed in X , and

consequently in each Ai. Since each Ai is compact, then
⋂
i∈I

Ai is compact by Proposition 4.8.

Proposition 4.11. Let X be a separated compact space. Every point of X has a fundamental system
of compact neighborhoods.

Proof. Take a point x0 and an open neighborhood A of x0 in X . The sets {x0} and X \A are disjoint
compact subsets of X . For every x∈X \A, there exist disjoint open subsets Ux,Vx of X such that x0 ∈Ux

and x∈Vx. Since X \A⊆
⋃

x∈X\A
Vx, there exists x1, . . . ,xn ∈ X \A such that X \A⊆Vx1∪·· ·∪Vxn . Then,

U =Ux1∩·· ·∩Uxn and V =Vx1∪·· ·∪Vxn are disjoint open subsets of X such that x0 ∈U and X \A⊆V .
Hence U is a compact neighborhood of x0. We have U ⊆ X \V , therefore U ⊆ X \V as X \V is closed,
and consequently U ⊆ A.

Proposition 4.12. Let X be a compact space, Y a topological space, and f : X → Y a continuous
function. Then f (X) is compact.

Proof. Let {Ui}i∈I be a family of open subsets of Y covering f (X). Since f is continuous, then each
f−1(Ui) is an open subset of X from Proposition 2.14. Moreover, X =

⋃
i∈I

f−1(Ui), then there exists

a finite subset J of I such that X =
⋃
j∈J

f−1(U j). Hence {U j} j∈J covers f (X), and f (X) is therefore

compact.

Corollary 4.13. Let X be a compact space, Y a separated space, and f : X→Y a continuous bijective
function. Then f is a homeomorphism of X onto Y .

Proof. If A is a closed subset of X , then A is compact from Proposition 4.8, therefore f (A) is compact
from Proposition 4.12, and consequently closed from Proposition 4.9. We deduce from Proposi-
tion 2.14 that f−1 is continuous.

Theorem 4.14. The product of a finite number of compact spaces is compact.

Proof. It suffices to show that if X and Y are compact, then X×Y is compact. Let {Ui}i∈I be a covering
of X ×Y with open subsets. For every m = (x,y) ∈ X ×Y , fix an open set Um such that m ∈Um. By
Proposition 3.11, there exist an open neighborhood Vm of x in X and an open neighborhood Wm of y
in Y such that Vm×Wm ⊆Um.
For a fixed x0 ∈X , {x0}×Y is homeomorphic to Y . Indeed, the function y 7→ (x0,y) of Y onto {x0}×Y
is bijective. It is continuous from Y into X×Y by Proposition 3.14 , therefore from Y into {x0}×Y by
Corollary 3.8. Its inverse function is the composite of the canonical injection of {x0}×Y into X ×Y ,
which is continuous from Corollary 3.8 once again, and of the canonical projection of X ×Y onto Y ,
which is also continuous from Proposition 3.14. The set {x0}×Y is then compact.
The family of open subsets {Vm ×Wm}m∈{x0}×Y is a covering of {x0}×Y , so there consequently
exist finite points m1, . . . ,mn ∈ {x0}×Y such that {x0}×Y ⊆ (Vm1 ×Wm1)∪ ·· · ∪ (Vmn ×Wmn). The
intersection Ax0 =Vm1∩·· ·∩Vmn is an open neighborhood of x0. For every (x,y)∈ Ax0×Y , there exists
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k ∈ {1, . . . ,n} such that (x,y) ∈Vmk ×Wmk , hence Ax0×Y is covered by a finite subset of {Ui}i∈I .
Now {Ax0}x0∈X forms a covering of X , from which one can extract a finite covering of open subsets
{Ax1 , . . . ,Axp}. Each Ax j ×Y , with j ∈ {1, . . . , p}, is covered by a finite subset of {Ui}i∈I , therefore
X×Y is covered by a finite subset of {Ui}i∈I .

4.3 Locally Compact Spaces

Definition 4.15. A topological space X is said to be locally compact if every point of X admits a
compact neighborhood.

Example. Consider the product topological space Rn, where R is equipped with the usual topology,
and take x = (x1, . . . ,xn) ∈ Rn. We know from the theorem of Borel-Lebesgue that, for every i ∈
{1, . . . ,n}, [xi − 1, xi + 1] is a compact neighborhood of xi in R. Then, by Proposition 3.11 and
Theorem 4.14, [x1−1, x1 +1]×·· ·× [xn−1, xn +1] is a compact neighborhood of x. The topological
space Rn is therefore locally compact.

Proposition 4.16. Let X be a separated space. The following conditions are equivalent:

(i) X is locally compact,

(ii) every point of X admits a fundamental system of compact neighborhoods.

Proof. We obviously have (ii)⇒ (i). We only prove (i)⇒ (ii) : Let x ∈ X and V be a compact
neighborhood of x. We know from Proposition 4.11 that x admits in V a fundamental system {Vi}i∈I

of compact neighborhoods. We deduce from Proposition 3.4 that {Vi}i∈I is a fundamental system of
compact neighborhoods of x in X .

Proposition 4.17. Let X be a locally compact space, and Y a subspace of X.

(i) If Y is closed, then Y is locally compact.

(ii) If X is separated and Y is open, then Y is locally compact.

Proof. Let x ∈ Y and V a compact neighborhood of x in X . Then V ∩Y is a neighborhood of x in Y .

(i) : We know from Proposition 3.3 that V ∩Y is closed in V , hence is compact by Proposition 4.8.

(ii) : As Y is a neighborhood of x, we can suppose from Proposition 4.16 that V ⊆ Y , and then V is a
compact neighborhood of x in Y .

Proposition 4.18. Let X1, . . . ,Xn be locally compact spaces, and X = X1×·· ·×Xn. Then X is locally
compact.

Proof. Take x = (x1, . . . ,xn) ∈ X . For every i ∈ {1, . . . ,n}, there exists a compact neighborhood Vi of
xi in Xi. Then V1×·· ·×Vn is a neighborhood of x in X is compact by Theorem 4.14.

18



Chapter 5

Connected Spaces

5.1 Connected Spaces

Definition 5.1. A topological space X is said to be connected if there does not exist a pair (A,B) of
disjoint nonempty open subsets of X such that X = AtB. By passage to complements, this definition
is equivalent to the nonexistence of a pair (A,B) of disjoint nonempty closed subsets of X such that
X = AtB. It is also equivalent to the nonexistence of a subset of X , distinct from X and ∅, that is
both open and closed.

Proposition 5.2. The topological space R equipped with the usual topology is connected.

Proof. Let A be an open and closed subset of R, and assume A and R\A nonempty. Taking x ∈R\A,
one of the sets A∩ [x,+∞) and A∩ (−∞, x] is nonempty. Suppose that B = A∩ [x,+∞) 6=∅. Then B
is closed. Since it is bounded below, then it has a smallest element as its infimum b is adherent to B.
Besides, since B = A∩ (x,+∞), then B is also open. Hence B contains an interval (b− ε, b+ ε) with
ε > 0. That contradicts the fact that b is the smallest element of B.

Definition 5.3. Let X be a topological space and Y ⊆ X . One says that Y is a connected subset of X
if the topological space Y is connected.

Example. The subspace Q of R is not connected. Take indeed an element x ∈ R\Q such as
√

2 or π .
Then Q=

(
(−∞, x)∩Q

)
t
(
(x,+∞)∩Q

)
which are two disjoint open subsets of Q.

Proposition 5.4. Let X be a topological space, {Ai}i∈I a family of connected subsets of X, and A the
set
⋃
i∈I

Ai. If the Ai intersect pairwise, then A is connected.

Proof. Suppose A is not connected. There exist nonempty subsets U,V ⊆ A open in A such that
V = A \U . For every i ∈ I, U ∩Ai and V ∩Ai are both open and complementary in Ai. Since Ai is
connected, then U ∩Ai = ∅ or V ∩Ai = ∅. Let IU and IV be the set of i ∈ I such that Ai ⊆U and
Ai ⊆ V respectively. Then, U =

⋃
i∈IU

Ai and V =
⋃
i∈IV

Ai. Therefore, there exist i, j ∈ I, i 6= j, such that

Ai and A j are disjoint, which is a contradiction.

Corollary 5.5. Let X be a topological space, and A1, . . . ,An connected subspaces of X such that
Ai∩Ai+1 6=∅ if i ∈ {1, . . . ,n}. Then, A1∪·· ·∪An is connected.

Proof. The proof is by induction. We suppose that A1∪ ·· · ∪An−1 is connected. As An−1∩An 6= ∅,
we deduce from Proposition 5.4 that A1∪·· ·∪An is connected.
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Proposition 5.6. Let X be a topological space, A a connected subset of X, and B a subset of X such
that A⊆ B⊆ A. Then B is connected.

Proof. Suppose that B is the union of subsets U,V that are disjoint and open in B. There exist open
sets U ′,V ′ in X such that U = B∩U ′ and V = B∩V ′. The sets A∩U and A∩V are then open and
complementary in A. Since A is connected, we have for example A∩U =∅, then A∩U ′ =∅, in other
words A⊆ X \U ′. Since X \U ′ is closed, then A⊆ X \U ′. So B∩U ′ =∅, implying U =∅.

Proposition 5.7. Let X ,Y be topological spaces and f a continuous function from X into Y . If X is
connected, then f (X) is connected.

Proof. If f (X) is not connected, it has nonempty open subsets U,V ⊆ f (X) that are complementary.
So f−1(U), f−1(V )⊆ X are nonempty open subsets that are complementary, which is absurd.

Proposition 5.8. Consider R equipped with the usual topology, and A⊆ R. The following conditions
are equivalent:

(i) A is connected,

(ii) A is an interval.

Proof. We can assume that A is nonempty and not reduced to a point.

(ii)⇒ (i) : If A is open, then A is homeomorphic to R, and consequently connected by Proposition 5.2.
If A is an arbitrary interval, then A◦ ⊆ A⊆ A, and consequently connected by Proposition 5.6.

(i)⇒ (ii) : Suppose that A is not an interval. There exist a,b ∈ A and x0 ∈ R\A such that a < x0 < b.
Then A is the union of the sets A∩ (−∞, x0) and A∩ (x0,+∞) which are open in A. Since A is
connected, A∩(x0,+∞) for example is empty. Then x < x0 for all x ∈ A, which contradicts b∈ A.

Proposition 5.9. Let X be a connected topological space, f : X → R a continuous function, and
a,b ∈ X. Then f takes on every value between f (a) and f (b).

Proof. The set f (X) is a connected subset of R by Proposition 5.7, hence is an interval of R by
Proposition 5.8. This interval contains f (a) and f (b), hence all numbers between them.

5.2 Connected Components

Proposition 5.10. Let X be a topological space, and x ∈ X. Among the connected subspaces of X
containing x, there exists one that is larger than all the others.

Proof. The union of all the connected subsets of X containing x is connected by Proposition 5.4, and
is obviously the largest of the connected subsets of X containing x.

Definition 5.11. Let X be a topological space and x∈ X . The largest connected subset of X containing
x is called the connected component of x in X .

Example. The topological spaces X =R\{0} and Y =R\{0, 1} are not homeomorphic, since X has
the two connected components (−∞, 0), (0,+∞), while Y the has three (−∞, 0), (0, 1), (1,+∞).

Proposition 5.12. Let X be a topological space.

(i) Every connected component of X is closed in X.
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(ii) Two distinct connected components are disjoint.

Proof. (i) : If Ax is the connected component of x, then Ax is connected by Proposition 5.6. But Ax is
the largest connected subset of X containing x, hence Ax = Ax.

(ii) : Let Ax,Ay be connected components that are not disjoint. Then Ax∪Ay is connected by Proposi-
tion 5.4. Since x∈Ax∪Ay, then Ax∪Ay⊆Ax, hence Ay⊆Ax. Similarly Ax⊆Ay, therefore Ax =Ay.

Proposition 5.13. Let X be a topological space. If every point of X has a connected neighborhood,
the connected components of X are open.

Proof. Let C be a connected component of X , x ∈ C, and V a connected neighborhood of x. Since
x ∈C∩V , the union C∪V is then connected, and C∪V ⊆C. Hence V ⊆C, and C is a neighborhood
of x. We deduce from Proposition 1.9 that C is open.

5.3 Locally Connected Spaces

Definition 5.14. A topological space X is said to be locally connected at its point x if x has a funda-
mental system of connected neighborhoods. If X is locally connected at each of its points, it is said to
be locally connected.

Example. The topological space R\{0} is not connected, but it is locally connected.

Proposition 5.15. Let X be a topological space. The following conditions are equivalent:

(i) X is locally connected,

(ii) for every open set V of X, each connected component of V is open in X.

Proof. (i)⇒ (ii) : Let C be a connected component of an open set V in X , and x ∈C. We can choose
a connected neighborhood U of x such that U ⊆V . Since U is connected, it must lie entirely in C. We
deduce from Proposition 1.9 that C is open.

(ii)⇒ (i) : Given x ∈ X , a neighborhood V of x in X , and open set U such that x ∈U and U ⊆V . Let
C be the connected component of U containing x. Since C is connected and open in X , then it is a
connected neighborhood of x contained in V .

5.4 Path Connected Spaces

Definition 5.16. Let X be a topological space and a,b ∈ X . A continuous map f from [0,1] into X
such that f (0) = a and f (1) = b is called a path in X with origin a and extremity b. If any two points
of X are the origin and extremity of a path in X , X is said to be path connected.

Example. The open unit n-ball Bn :=
{
(x1, . . . ,xn)∈Rn

∣∣ x2
1+ · · ·+x2

n < 1
}

is path connected. Indeed,
any points x,y ∈ Bn can be connected by the straight-line path f : [0, 1]→ Bn defined by

f (t) = (1− t)x+ ty.

Proposition 5.17. Let X be an path connected topological space. Then X is connected.
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Proof. Take a point x0 ∈X . For every x∈X , let fx : [0,1]→X be a path with origin x0 and extremity x.
Since [0,1] is connected by Proposition 5.8, then fx

(
[0,1]

)
is connected by Proposition 5.7. Therefore

X =
⋃
x∈X

fx
(
[0,1]

)
is connected by Proposition 5.4, as x0 belongs to all of the fx

(
[0,1]

)
.

Proposition 5.18. Let X be a topological space, and A,B ⊆ X. If A,B are path connected such that
A∩B 6=∅, then A∪B is path connected.

Proof. Let x ∈ A, y ∈ B, and pick z ∈ A∩B. Choose paths f : [0,1]→ A, g : [0,1]→ B such that
f (0) = x, f (1) = z, and g(0) = z, g(1) = y. We obtain a path h : [0,1]→ A∪B from x to y as follows:

h(t) =

{
f (2t) if t ∈

[
0, 1

2

]
,

g(2t−1) if t ∈
[1

2 , 1
]
.

Proposition 5.19. Let X ,Y be topological spaces, and f : X → Y a continuous function. If X is path
connected, then f (X) is path connected.

Proof. If y1,y2 ∈ f (X), there exist x1,x2 ∈ X such that f (x1) = y1 and f (x2) = y2. As X is path
connected, there exists a path h : [0, 1]→ X from x1 to x2. Hence f ◦h : [0, 1]→ Y is a path from y1
to y2.

5.5 Locally Path-Connected Spaces

Definition 5.20. A topological space X is said to be locally path connected at its point x if x has a
fundamental system of path-connected neighborhoods. If X is locally path connected at each of its
points, it is said to be locally path connected.

Definition 5.21. Let X be a topological space and x ∈ X . The path component of x in X is the set
formed by the points y ∈ X such that a path with origin x and extremity y in X exists.

Proposition 5.22. Let X be a topological space. The following conditions are equivalent:

(i) X is locally path connected,

(ii) for every open set V of X, each path component of V is open in X.

Proof. (i)⇒ (ii) : Let C be a path component of an open set V in X , and x ∈ C. We can choose a
path-connected neighborhood U of x such that U ⊆V . Since U is path connected, it must lie entirely
in C. We deduce from Proposition 1.9 that C is open.

(ii)⇒ (i) : Given x ∈ X , a neighborhood V of x in X , and open set U such that x ∈U and U ⊆ V .
Let C be the path component of U containing x. Since C is path connected and open in X , then it is a
path-connected neighborhood of x contained in V .
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Chapter 6

Metric Spaces

6.1 Metric Spaces

Definition 6.1. A metric on a set X is a function d : X×X→R+ satisfying the following conditions:

(i) d(x,y) = 0 if and only if x = y,

(ii) d(x,y) = d(y,x) for all x,y ∈ X ,

(iii) d(x,z)≤ d(x,y)+d(y,z) for all x,y,z ∈ X .

A set equipped with a metric is called a metric space.

Example. Let x=(x1, . . . ,xn)∈Rn, y=(x1, . . . ,xn)∈Rn, and set d(x,y)=
√
(x1− y1)2 + · · ·+(xn− yn)2.

It is known that d is a metric on Rn, and in this way Rn becomes a metric space.

Definition 6.2. Let X be a set equipped with a metric d, and Y ⊆ X . Then Y becomes a metric space
with the restriction of d to Y ×Y , and is called a metric subspace of X .

Definition 6.3. Let X be a metric space with metric d, take a ∈ X , and ρ ∈ R∗+. The set B(a, ρ) :={
x ∈ X

∣∣ d(a,x)< ρ
}

is called an open ball with center a and radius ρ . A subset A⊆ X is said to be
open if, for each x0 ∈ A, there exists ε ∈ R∗+ such that B(x0, ε)⊆ A.

Definition 6.4. Let X be a metric space, and A⊆ X . One says that A is closed if X \A is open.

Proposition 6.5. Every metric space X is a topological space, and the topology of X is formed by the
open sets of X.

Proof. Let X be a metric space. The subsets ∅ and X of X are clearly open.

Take a family {Ai}i∈I of open subsets of X . Let A =
⋃
i∈I

Ai, and x0 ∈ A. There exists i ∈ I such that

x0 ∈ Ai. Hence, there exists ε ∈ R∗+ such that B(x0, ε)⊆ Ai ⊆ A. Thus A is open.

Suppose now that I is finite. Let C =
⋂
i∈I

Ai, and x0 ∈ C. For every i ∈ I, there exists εi ∈ R∗+ such

that B(x0, εi)⊆ Ai. If ε ∈ inf{εi}i∈I , then B(x0, ε)⊆ Ai for every i ∈ I. Hence B(x0, ε)⊆C, and C is
consequently open.
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Proposition 6.6. Let X be a set, and d,d′ metrics on X. Suppose there exist c,c′ ∈ R∗+ such that

cd(x,y)≤ d′(x,y)≤ c′ d(x,y)

for all x,y ∈ X. The open subsets of X are the same for d and d′.

Proof. Let A be a subset of X that is open for d, and x0 ∈ A. There exists ε ∈ R∗+ such that
{

x ∈
X
∣∣ d(x0, x) < ε

}
⊆ A. If x ∈ X satisfies d′(x0, x) < cε , then d(x0, x) < ε , so x ∈ A. Hence A is also

open for d′. On the other side, one proves that if A is open for d′, then A is open for d by interchanging
the roles of d and d′.

6.2 Continuity of the Metric

Proposition 6.7. Let X be a metric space. Its metric d : X×X → R+ is continuous.

Proof. Let (x0, y0) ∈ X ×X , and take ε ∈ R∗+. The set B
(
x0,

ε

2

)
×B
(
y0,

ε

2

)
is a neighborhood of

(x0, y0) in X×X . If (x, y) ∈ B
(
x0,

ε

2

)
×B
(
y0,

ε

2

)
, then

d(x, y)≤ d(x, x0)+d(x0, y0)+d(y0, y)<
ε

2
+d(x0, y0)+

ε

2
= d(x0, y0)+ ε,

d(x0, y0)≤ d(x0, x)+d(x, y)+d(y, y0)<
ε

2
+d(x, y)+

ε

2
= d(x, y)+ ε,

therefore |d(x, y)−d(x0, y0)|< ε . So d is continuous at (x0, y0).

Definition 6.8. Let X be a metric space, and A a nonempty subset of X . One calls diameter of A the
number diam(A) := sup

{
d(x, y)

∣∣ x,y ∈ A
}

.

Lemma 6.9. Consider R with the usual topology, and let A be a nonempty subset of R. Suppose that
A is bounded above, and x its supremum. Then x is the largest element of A.

Proof. Let V be a neighborhood of x in R, and ε ∈ R∗+ such that (x− ε, x+ ε)⊆V . By definition of
the supremum, there exists y ∈ A such that x− ε < y≤ x. Then y ∈V , meaning that V ∩A 6=∅, thus
x is adherent to A.
Let x′ ∈ A such that x′ > x, and set ε = x′− x > 0. Then (x′− ε, x′+ ε) is a neighborhood of x′,
therefore intersects A. Let y ∈ (x′− ε, x′+ ε)∩A. Since y > x′− ε = x, x is then not an upper bound
for A, which is absurd. So, x is the largest element of A.

Proposition 6.10. Let X be a metric space, and A⊆ X. The sets A and A have the same diameter.

Proof. Denote d the metric of X . Let D =
{

d(x, y)
∣∣ x,y ∈ A

}
and D′ =

{
d(x, y)

∣∣ x,y ∈ A
}

. We
obviously have D ⊆ D′. One deduce from Proposition 3.11 that every point of A×A is adherent
to A× A. So D′ = d(A× A) ⊆ d(A×A), and d(A×A) ⊆ d(A×A) = D by Proposition 2.14 and
Proposition 6.7. Then D′ ⊆ D, and consequently D = D′. If D is bounded, we then deduce from
Lemma 6.9 that the diameter of A and A is the largest element of D. If D is unbounded, then D and D′

have the same supremum +∞.

Definition 6.11. Let X be a metric space with metric d, and A,B two nonempty subsets of X . The
distance from A to B the number d(A, B) := inf

{
d(x, y)

∣∣ x ∈ A, y ∈ B
}

. It is clear that d(A, B) and
d(B, A) are equal. If z ∈ X , we define d(z, A) := inf

{
d(z, x)

∣∣ x ∈ A
}

.
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6.3 Sequences in Metric Spaces

Proposition 6.12. Let X be a metric space, x∈X, and A⊆X. The following conditions are equivalent:

(i) x ∈ A,

(ii) there is a sequence (xn)n∈N of points in A that tends to x.

Proof. (ii)⇒ (i) : Since every neighborhood of x intersects {xn}n∈N, then every neighborhood of x
intersects A which means that x ∈ A.
(i)⇒ (ii) : For every n ∈ N, there exists a point xn ∈ A∩B

(
x, 1

n

)
. Then (xn)n∈N tends to x.

Proposition 6.13. Let X be a metric space, (xn)n∈N a sequence of points in X, and x ∈ X. The
following conditions are equivalent:

(i) x is an adherence value of (xn)n∈N along the filter base
{
{n, n+1, . . .}

}
n∈N,

(ii) there exists an infinite subset {xnk}k∈N of N, with nk < nk+1, such that (xnk)k∈N tends to x along
the filter base

{
{nk, nk+1, . . .}

}
k∈N.

Proof. (ii)⇒ (i) : The point x is then an adherence value of (xnk)k∈N, and consequently of (xn)n∈N.
(i)⇒ (ii) : If d is the metric of X , there exist n1 ∈ N such that d(xn1 , x)< 1, n2 ∈ N such that n2 > n1
and d(xn2 , x) < 1

2 , n3 ∈ N such that n3 > n2 and d(xn3 , x) < 1
3 , and so on. So, the sequence (xnk)k∈N

tends to x along
{
{nk, nk+1, . . .}

}
k∈N.

Proposition 6.14. Let X ,Y be metric spaces, A ⊆ X, f : A→ Y a function, a ∈ A, and y ∈ Y . The
following conditions are equivalent:

(i) the point y is an adherence value of f along the filter {A∩V}V∈V , where V is a fundamental
system of neighborhoods of a,

(ii) there exists a sequence (xn)n∈N in A such that (xn)n∈N tends to a and
(

f (xn)
)

n∈N tends to y.

Proof. (ii)⇒ (i) : On one side, if V ∈ V , there exists i ∈ N such that xn ∈ A∩V if n ≥ i. On the
other side, if W is a neighborhood of y, there exists j ∈ N such that f (xn) ∈W if n ≥ j. Then,
f (xn) ∈ f (A∩V )∩W if n≥max{i, j}.
(i) ⇒ (ii) : Denote by BX(a, ρ) and BY (y, ρ ′) the open balls of centers and radius a,y and ρ,ρ ′

respectively. Take a point x1 ∈ BX(a, 1)∩A such that f (x1) ∈ BY (y, 1), take a point x2 ∈ BX(a, 1
2)∩A

such that f (x2) ∈ BY (y, 1
2), take a point x3 ∈ BX(a, 1

3)∩ A such that f (x3) ∈ BY (y, 1
3), and so on.

Hence, the sequence (xn)n∈N tends to a, and
(

f (xn)
)

n∈N tends to y.

Proposition 6.15. Let X ,Y be metric spaces, f : X → Y a function, and x ∈ X. The following condi-
tions are equivalent:

(i) f is continuous at x,

(ii) for every sequence (xn)n∈N in X that tends to x, the sequence
(

f (xn)
)

n∈N tends to f (x).

Proof. (i)⇒ (ii) : Consider the filter base
{
{xn, xn+1, . . .}

}
n∈N and a neighborhood V of f (x) in

Y . There exists a neighborhood U of x in X such that f (U) ⊆ V . And there exists k ∈ N such that
{xk, xk+1, . . .} ⊆U . Then,

{
f (xk), f (xk+1), . . .

}
⊆V .

(ii)⇒ (i) : Let dX and dY be the metrics of X and Y respectively, and suppose that f is not continuous at
x. There exists ε ∈R∗+ such that, for any η ∈R∗+, there is y∈X with dX(x, y)<η yet dY

(
f (x), f (y)

)
>

ε . If we successively take η = 1, 1
2 ,

1
3 , . . . , we obtain points y1, y2, y3, . . . of X such that dX(x, yn)<

1
n

and dY
(

f (x), f (yn)
)
> ε for n∈N. Then (yn)n∈N tends to x, but

(
f (yn)

)
n∈N does not tend to f (x).
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6.4 Complete Metric Spaces

Definition 6.16. Let X be a metric space with metric d. A sequence (xn)n∈N of points in X is called a
Cauchy sequence if, for every ε ∈ R∗+, there exists p ∈ N such that m,n≥ p implies d(xm, xn)< ε .

Proposition 6.17. Let X be a metric space with metric d. If a sequence (xn)n∈N of points in X has a
limit in X, then it is a Cauchy sequence.

Proof. Suppose that (xn)n∈N tends to x. For every ε ∈ R∗+, there exists a positive integer p such that
n ≥ p implies d(xn, x) < ε

2 . Then, if m,n are positive integers bigger than p, we have d(xm, x) < ε

2
and d(xn, x)< ε

2 , which implies d(xm, xn)≤ d(xm, x)+d(xn, x)< ε .

Definition 6.18. A metric space X is said to be complete if every Cauchy sequence of points in X has
a limit in X .

Proposition 6.19. Let X be a metric space, (xn)n∈N a Cauchy sequence in X, and (xnk)k∈N a subse-
quence of (xn)n∈N. If the sequence (xnk)k∈N has a limit l, then (xn)n∈N also tends to l.

Proof. For every ε ∈R∗+, there exists a positive integer p such that, if m,n are positive integers bigger
than p, then d(xm, xn) <

ε

2 . Fix a positive integer n bigger than p. Since (xnk)k∈N tends to l, then(
d(xnk , xn)

)
k∈N tends to d(l, xn), so d(l, xn) ≤ ε

2 < ε . As this is true for all positive integers n ≥ p,
then (xn)n∈N also tends to l.

Proposition 6.20. Let X be a complete metric space, and Y a closed subspace of X. Then Y is
complete.

Proof. Let (xn)n∈N be a Cauchy sequence in Y . It is also a Cauchy sequence in X , hence has a limit l
in X . We deduce from Proposition 6.12 that l ∈ Y . But Y = Y , thus (xn)n∈N has a limit in Y .

Proposition 6.21. Let X be a metric space, and Y a complete metric subspace of X. Then Y is closed
in X.

Proof. Take l ∈Y . We know from Proposition 6.12 that there exists a sequence (xn)n∈N in Y that tends
to l. So, we deduce Proposition 6.17 that (xn)n∈N is a Cauchy sequence. It thus has a limit in Y since
Y is complete. As l is its limit, we must have l ∈ Y , therefore Y = Y .
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Chapter 7

Fundamental Groups

7.1 Homotopy of Paths

Definition 7.1. Let X be a topological space, and f ,g two paths in X . These paths are said to be path
homotopic if they have the same origin a, the same extremity b, and if there is a continuous function
F : [0,1]× [0,1]→ X such that, if s, t ∈ [0,1],

F(s,0) = f (s) and F(s,1) = g(s),

F(0, t) = a and F(1, t) = b.

In that case, one writes f 'p g. The function F is called a path homotopy between f and g.

Example. Let f ,g be paths in Rn. The function F : [0,1]× [0,1]→ Rn defined by

F(x, t) = (1− t) f (x)+ tg(x)

is a path homotopy between f and g.

Proposition 7.2. The relation'p on paths in a topological space X with fixed origins and extremities
is an equivalence relation.

Proof. Given a path f , the function F(x, t) = f (x) is the required path homotopy to get f 'p f .
If f 'p g is established by a path homotopy F(x, t), then G(x, t) = F(x, 1− t) is a path homotopy
between g and f .
Suppose that f 'p g by means of a path homotopy F , and g 'p h by means of a path homotopy G,
then f 'p h by means of the path homotopy H : [0,1]× [0,1]→ X defined by the equation

H(x, t) =

{
F(x, 2t) if t ∈

[
0, 1

2

]
,

G(x, 2t−1) if t ∈
[1

2 , 1
]
.

If f is a path, denote its path-homotopy equivalence class by [ f ].

Definition 7.3. Let X be a topological space, f a path in X from a to b, and g a path in X from b to c.
Define the product f ∗g of f and g to be the path h in X given by the equation

h(s) =

{
f (2s) for s ∈

[
0, 1

2

]
,

g(2s−1) for s ∈
[1

2 ,1
]
.
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The product operation of Definition 7.3 extends to an operation on path-homotopy classes defined by

[ f ]∗ [g] := [ f ∗g].

Lemma 7.4. Let X ,Y be a topological space, k : X → Y a continuous function, and F is a path
homotopy between two paths f , f ′ in X.

(i) Then k ◦F is a path homotopy in Y between k ◦ f and k ◦ f ′.

(ii) Moreover, if g is a path in X with f (1) = g(0), then k ◦ ( f ∗g) = (k ◦ f )∗ (k ◦g).

Proof. (i) : The function k ◦F : [0, 1]× [0, 1]→ Y is continuous such that, if s, t ∈ [0, 1],

k ◦F(s, 0) = k ◦ f (s) and k ◦F(s, 1) = k ◦ f ′(s),

k ◦F(0, t) = k ◦ f (0) = k ◦ f ′(0) and k ◦F(1, t) = k ◦ f (1) = k ◦ f ′(1).

(ii) : We have

k ◦ ( f ∗g)(t) = k ◦

{
f (2t) for t ∈

[
0, 1

2

]
g(2t−1) for t ∈

[1
2 , 1
] ={k ◦ f (2t) for t ∈

[
0, 1

2

]
k ◦g(2t−1) for t ∈

[1
2 , 1
] = (k ◦ f )∗ (k ◦g)(t).

For x ∈ X , let ex denote the constant path carrying all of [0,1] to the point x. Given a path f in X from
a to b, denote the reverse of f by f̄ . It is the path from b to a defined for s ∈ [0, 1] by f̄ (s) := f (1− s).

Proposition 7.5. The operation ∗ on path-homotopy classes in a topological space X has the following
properties:

(i) If [ f ]∗
(
[g]∗ [h]

)
is defined, so is

(
[ f ]∗ [g]

)
∗ [h], and they are equal.

(ii) If f is a path in X from a to b, then

[ f ]∗ [eb] = [ f ] and [ea]∗ [ f ] = [ f ].

(iii) If f is a path in X from a to b, then

[ f ]∗ [ f̄ ] = [ea] and [ f̄ ]∗ [ f ] = [eb].

Proof. (ii) : If e0 is the constant path at 0, and i : [0, 1]→ [0, 1] the identity map, then e0 ∗ i is a path
from 0 to 1. Since i and e0 ∗ i are paths in R, there is a path homotopy F between them. Then f ◦F is
a path homotopy in X between the paths f ◦ i = f and f ◦ (e0 ∗ i) = ( f ◦e0)∗ ( f ◦ i) = ea ∗ f . Similarly,
using the fact that i∗ e1 and i are path homotopic in [0, 1], one shows that [ f ]∗ [eb] = [ f ].
(iii) : The path i∗ ī, that begins and ends at 0, is path homotopic to the constant path e0 as paths in R
once again. Denoting F a path homotopy between them, we get from Lemma 7.4 that f ◦F is a path
homotopy between f ◦e0 = ea and ( f ◦ i)∗ ( f ◦ ī) = f ∗ f̄ . With a similar argument, using the fact that
ī∗ i and e1 are path homotopic in [0, 1], one shows that [ f̄ ]∗ [ f ] = [eb].
(i) : We have

f ∗ (g∗h)(t) =

{
f (2t) for t ∈

[
0, 1

2

]
,

g∗h(2t−1) for t ∈
[1

2 ,1
]
,
=


f (2t) for t ∈

[
0, 1

2

]
,

g
(
2(2t−1)

)
for t ∈

[1
2 ,

3
4

]
,

h
(
2(2t−1)−1

)
for t ∈

[3
4 ,1
]
,
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and ( f ∗g)∗h(t) =

{
f ∗g(2t) for t ∈

[
0, 1

2

]
,

h(2t−1) for t ∈
[1

2 ,1
]
,
=


f (4t) for t ∈

[
0, 1

4

]
,

g(4t−1) for t ∈
[1

4 ,
1
2

]
,

h(2t−1) for t ∈
[1

2 ,1
]
.

Then
(

f ∗ (g∗h)
)
◦α = ( f ∗g)∗h with α : [0, 1]→ [0, 1] defined by α(s) =


2s for s ∈

[
0, 1

4

]
s+ 1

4 for s ∈
[1

4 ,
1
2

]
s
2 +

1
2 for s ∈

[1
2 ,1
] .

As α and i are paths in R, we get by Lemma 7.4 that
(

f ∗(g∗h)
)
◦α 'p

(
( f ∗g)∗h

)
◦ i=( f ∗g)∗h.

7.2 Fundamental Groups

Definition 7.6. Let X be a topological space, and a ∈ X . A path in X that starts and ends at a is called
a loop at the basepoint a. The set of all homotopy classes [ f ] of loops f : [0,1]→ X at the basepoint
a is denoted π1(X , a).

Proposition 7.7. Let X be a topological space, and a ∈ X. The set π1(X , a) is a group with respect to
the product ∗.

Proof. By restricting to loops f ,g with a fixed basepoint, we guarantee that the product f ∗g or more
exactly the product [ f ]∗ [g] = [ f ∗g] is defined. It remains to verify the three axioms for a group:

• From Proposition 7.5 (i), for all [ f ], [g], [h] ∈ π1(X , a), [ f ]∗
(
[g]∗ [h]

)
=
(
[ f ]∗ [g]

)
∗ [h].

• From Proposition 7.5 (ii), for every [ f ] ∈ π1(X , a), [ f ]∗ [ea] = [ f ] and [ea]∗ [ f ] = [ f ].

• From Proposition 7.5 (iii), for every [ f ] ∈ π1(X , a), [ f ]∗ [ f̄ ] = [ea] and [ f̄ ]∗ [ f ] = [ea].

Definition 7.8. Let X be a topological space, and a∈X . The group π1(X , a) is called the fundamental
group of X at the basepoint a.

Example. For a convex set X in Rn with basepoint a ∈ X , π1(X , a) is the trivial one-element group.
Indeed the function F : [0,1]× [0,1]→ Rn defined by

F(x, t) = (1− t) f (x)+ tg(x)

is a path homotopy between any loops f ,g based at a.

Definition 7.9. A topological space X is said to be simply connected if it is a path connected space
and if π1(X , a) is the trivial one-element group for every a ∈ X .

Proposition 7.10. Let X be a simply connected topological space. Then, any paths in X having the
same origin and extremity are path homotopic.

Proof. Let f ,g be paths in X from a to b. Then f ∗ ḡ is defined and is a loop on X based at a. Since X
is simply connected, f ∗g is path homotopic to ea. Using Proposition 7.5, we get

[ f ] = [ f ]∗ [eb] = [ f ]∗ [ḡ∗g] = [ f ∗ ḡ]∗ [g] = [ea]∗ [g] = [g].
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Proposition 7.11. Let X be a topological space, a,b ∈ X, and f a path from a to b. Define the map
f̂ : π1(X , a)→ π1(X , b) by

f̂
(
[h]
)

:= [ f̄ ]∗ [h]∗ [ f ].

Then the map f̂ is a group isomorphism.

Proof. Let [g], [h] ∈ π1(X , a). We have

f̂
(
[g]
)
∗ f̂
(
[h]
)
=
(
[ f̄ ]∗ [g]∗ [ f ]

)
∗
(
[ f̄ ]∗ [h]∗ [ f ]

)
= [ f̄ ]∗ [g]∗ [h]∗ [ f ]
= f̂
(
[g]∗ [h]

)
.

Then, f̂ is a homomorphism. To prove that f̂ is an isomorphism, we show that ̂̄f : π1(X , b)→ π1(X , a)
defined for every [h] ∈ π1(X , b) by

̂̄f ([h]) := [ f ]∗ [h]∗ [ f̄ ]

is an inverse for f̂ . We have ̂̄f ◦ f̂
(
[h]
)
= [ f ]∗

(
[ f̄ ]∗ [h]∗ [ f ]

)
∗ [ f̄ ] = [h]. A similar computation shows

that f̂ ◦ ̂̄f ([h])= [h].

Suppose that h : X → Y is a continuous function that carries the point a of X to the point b of Y . One
denotes this fact by writing h : (X , a)→ (Y, b).

Definition 7.12. Let X ,Y be topological spaces, and h : (X , a)→ (Y, b) a continuous function. Define
h∗ : π1(X , a)→ π1(Y, b) by

h∗
(
[ f ]
)

:= [h◦ f ].

The map h∗ is called the homomorphism induced by h relative to the basepoint a.

Proposition 7.13. Let X ,Y,Z be topological spaces.

(i) If h : (X , a)→ (Y, b) and k : (Y, b)→ (Z, c) are continuous maps, then (k ◦h)∗ = k∗ ◦h∗.

(ii) If i : (X , a)→ (X , a) is the identity map, then i∗ is the identity homomorphism.

Proof. (i) : We have both equalities

(k ◦h)∗
(
[ f ]
)
=
[
(k ◦h)◦ f

]
,

(k∗ ◦h∗)
(
[ f ]
)
= k∗

(
h∗
(
[ f ]
))

= k∗
(
[h◦ f ]

)
=
[
k ◦ (h◦ f )

]
.

(ii) : We have i∗
(
[ f ]
)
= [i◦ f ] = [ f ].

Corollary 7.14. Let X ,Y be topological spaces. If h : (X , a)→ (Y, b) is a homeomorphism from X to
Y , then h∗ is an isomorphism from π1(X , a) to π1(Y, b).

Proof. Let k : (Y, b)→ (X , a) be the inverse of h. Then k∗ ◦h∗ = (k ◦h)∗ = i∗, where i is the identity
map of (X , a). Besides, h∗ ◦ k∗ = (h◦ k)∗ = j∗, where j is the identity map of (Y, b). As i∗ and j∗ are
the identity homomorphisms of π1(X , a) and π1(Y, b) respectively, k∗ is then the inverse of h∗.

Proposition 7.15. Let X ,Y be topological spaces, and (a, b) ∈ X ×Y . Then π1
(
X ×Y, (a, b)

)
is

isomorphic to π1(X , a)×π1(Y, b).
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Proof. We know from Proposition 3.14 that the existence of a loop f : [0, 1]→ X×Y at the basepoint
(a, b) is equivalent to the existence of a loop g : [0, 1]→ X at the basepoint a, and a loop h : [0, 1]→Y
at the basepoint b such that f = (g, h). We also know from Proposition 3.14 that the existence of a
path homotopy F : [0, 1]× [0, 1]→ X×Y between two loops f1, f2 at the basepoint (a, b) is equivalent
to the existence of a path homotopy G : [0, 1]× [0, 1]→ X between two loops g1,g2 at the basepoint a,
and a path homotopy H : [0, 1]× [0, 1]→Y between two loops h1,h2 at the basepoint b such that f1 =
(g1, h1), f2 =(g2, h2), and F =(G, H). Thus, the function α : π1

(
X×Y, (a, b)

)
→ π1(X , a)×π1(Y, b)

defined, for a loop f = (g, h) at the basepoint (a, b), by α
(
[ f ]
)
=
(
[g], [h]

)
is bijective. It can also be

extended to a group homomorphism since, for two loops f1 = (g1, h1), f2 = (g2, h2) at the basepoint
(a, b), we have

α
(
[ f1]∗ [ f2]

)
= α

(
[ f1 ∗ f2]

)
=
(
[g1 ∗g2], [h1 ∗h2]

)
=
(
[g1]∗ [g2], [h1]∗ [h2]

)
= α

(
[ f1]
)
∗α
(
[ f2]
)
.

Hence, α is an isomorphism.

7.3 The Fundamental Group of Sn

Lemma 7.16. For p1, p2, p3 ∈ Rn, the triangle of vertices p1, p2, p3 is

T = {t1 p1 + t2 p2 + t3 p3 | t1, t2, t3 ∈ R+, t1 + t2 + t3 = 1}.

Consider a topological space X, and a continuous function f : T → X. For i, j ∈ {1,2,3} with i < j,
the standard parametrisation of f restricted to the edge from pi to p j is the path

fi j : [0, 1]→ X , t 7→ f
(
(1− t)pi + t p j

)
from f (pi) to f (p j). We have, f13 'p f12 ∗ f23.

Proof. Consider the function

q : [0, 1]× [0, 1]→ T, (t, s) 7→

{
(1− t− ts)p1 +2tsp2 +(t− ts)p3 for t ≤ 1

2 ,

(1− t− s− ts)p1 +2(1− t)sp2 +(t− s+ ts)p3 for t ≥ 1
2 .

We have

f
(
q(t, 0)

)
=

{
f
(
(1− t)p1 + t p3

)
= f13(t) for t ≤ 1

2

f
(
(1− t)p1 + t p3

)
= f13(t) for t ≥ 1

2

= f13(t),

f
(
q(t, 1)

)
=

{
f
(
(1−2t)p1 +2t p2

)
= f12(2t) for t ≤ 1

2

f
((

1− (2t−1)
)

p2 +(2t−1)p3

)
= f23(2t−1) for t ≥ 1

2
= f12 ∗ f23(t),

f
(
q(0, s)

)
= f (p1) and f

(
q(1, s)

)
= f (p3).

Hence, the function
F : [0, 1]× [0, 1]→ X , (t, s) 7→ f

(
q(t, s)

)
is a path homotopy from f13 to f12 ∗ f23.
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Lemma 7.17. Let X be a topological space, f : [0, 1]→ X a path in X, and a0, . . . ,an ∈ R such that
0 = a0 < a1 < · · ·< an = 1. For i ∈ {1, . . . ,n}, let li : [0, 1]→ [ai−i, ai] be the affine function such that
li(0) = ai−1 and li(1) = ai, and

fi : [0, 1]→ X , t 7→ f ◦ li(t)

the standard parametrisation of f restricted to [ai−i, ai]. Then, [ f ] = [ f1]∗ · · · ∗ [ fn].

Proof. Using Lemma 7.16 with f equal to the identity map i[a0,a2] on [a0, a2], we prove that l1 ∗ l2 'p

l12 which is the affine function such that l12(0)= a0 and l12(1)= a2. More generally, for k∈{3, . . . ,n},
we can use Lemma 7.16 with f equal to the identity map i[a0,ak] on [a0, ak] to prove that l1k−1∗ lk'p l1k,
where l1k−1 and l1k are the affine functions such that l1k−1(0) = l1k = a0, l1k−1(1) = ak−1, and l1k = ak.
Hence, we successively obtain

l1 ∗ l2 ∗ l3 ∗ · · · ∗ ln = l12 ∗ l3 ∗ · · · ∗ ln
= l13 ∗ · · · ∗ ln
= l1n

which is the identity map on [0, 1]. We deduce from Lemma 7.4 that

( f ◦ l1)∗ ( f ◦ l2)∗ ( f ◦ l3)∗ · · · ∗ ( f ◦ ln) = f ◦ l1n = f

f1 ∗ f2 ∗ f3 ∗ · · · ∗ fn = f

[ f1]∗ [ f2]∗ [ f3]∗ · · · ∗ [ fn] = [ f ].

Proposition 7.18. Let X be topological space, and A,B two open subsets of X such that X = A∪B and
A∩B 6= ∅. Suppose that A,B are path connected, and take x ∈ A∩B. Consider the inclusion maps
i : A ↪→ X and j : B ↪→ X. Then, π1(X , x) is generated by the images of the induced homomorphisms

i∗ : π1(A,x)→ π1(X , x) and j∗ : π1(B, x)→ π1(X , x).

Proof. Let f : [0, 1]→ X be a loop based at x. We know from Theorem 8.10 that there exists a positive

integer n such that, for every i ∈ {1, . . . ,n}, the restriction of f to the interval
[ i−1

n
,

i
n

]
is contained

in A or in B. Let fi be the standard parametrisation of f restricted to
[ i−1

n
,

i
n

]
, that is

fi : [0, 1]→ A (or B), t 7→ f
( i−1+ t

n

)
.

Since A,B are path connected, we can find a path hi from f
( i

n

)
to x so that

• if f
( i

n

)
∈ A, then hi : [0, 1]→ A is a path in A,

• if f
( i

n

)
∈ B, then hi : [0, 1]→ A is a path in B.
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Using Lemma 7.17, we may write

f = f1 ∗ f2 ∗ · · · ∗ fi ∗ · · · ∗ fn−1 ∗ fn

= f1 ∗h1 ∗ h̄1 ∗ f2 ∗h2 ∗ · · · ∗ h̄i−1 ∗ fi ∗hi ∗ · · · ∗ h̄n−2 ∗ fn−1 ∗hn−1 ∗ h̄n−1 ∗ fn

= k1 ∗ k2 ∗ · · · ∗ kn−1 ∗ kn,

where

k1 = f1 ∗h1, k2 = h̄1 ∗ f2 ∗h2, . . . , ki = h̄i−1 ∗ fi ∗hi, . . . , kn−1 = h̄n−2 ∗ fn−1 ∗hn−1, kn = h̄n−1 ∗ fn.

To finish, for every i ∈ {1, . . . ,n}, ki is a loop based at x in A or in B.

Corollary 7.19. Let X be a topological space, and A,B open sets of X such that X = A∪ B and
A∩B 6=∅. If A and B are simply connected, then X is simply connected.

Proof. As A and B are path connected, we deduce from Proposition 5.18 that X is path connected.
Choose a base point x ∈ A∩B. Since π1(A, x) and π1(B, x) are the trivial one-element group, π1(X , x)
is then generated by the neutral element by Proposition 7.18, so it is trivial.

Corollary 7.20. If n is a positive integer such that n≥ 2, then Sn is simply connected.

Proof. Write Sn = A∪B, where A = Sn \
{
(0, . . . ,0,1)

}
and B = Sn \

{
(0, . . . ,0,−1)

}
. We know

from the stereographic projection of A onto Rn that A is homeomorphic to Rn. Moreover, the function
f : A→ B, a 7→ −a is a homeomorphism between A and B. Hence, A and B are simply connected,
and also Sn by Corollary 7.19.
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Chapter 8

Covering Spaces

8.1 Covering Maps

Definition 8.1. Let X ,Y be topological spaces, and p : X → Y a continuous surjective function. An
open set A of Y is said to be evenly covered by p if the inverse image p−1(A) is equal to

⊔
i∈I

Ai such

that Ai is an open subset of X , and the restriction of p to Ai is a homeomorphism of Ai to A. The family
{Ai}i∈I is called a partition of p−1(A) into slices.

Definition 8.2. Let X ,Y be open topological spaces, and p : X → Y a continuous surjective function.
If every point a of Y has an open neighborhood A that is evenly covered by p, then p is called a
covering map, and X is said to be a covering space of Y .

Example. Consider R with the usual topology, and S1 =
{
(cos t, sin t)

∣∣ t ∈ [0, 2π]
}

equipped with
the topology induced by the usual topology of R2. For any point a = (cosu, sinu) ∈ S1, the set
Ua =

{
(cos t, sin t)

∣∣ t ∈ (u−1, u+1)
}

is then an open neighborhood of a. The function p : R→ S1

given by p(x) = (cos2πx, sin2πx) is continuous and surjective. Moreover,

• we have p−1(Ua) =
⊔
k∈Z

(u−1
2π

+ k,
u+1
2π

+ k
)

, where
(u−1

2π
+ k,

u+1
2π

+ k
)

is open in R,

• the restriction pk of p to
(u−1

2π
+ k,

u+1
2π

+ k
)

is clearly a homeomorphism onto Ua.

Then, p is a covering map.

Definition 8.3. Let X ,Y be topological spaces, and f : X → Y a function. A function s : Y → X is
called a section of f is p

(
s(y)

)
= y for every y ∈ Y .

Proposition 8.4. Let X ,Y be topological spaces, and p : X → Y a covering map. For every evenly
covered set V ⊆ Y , and every point x ∈ p−1(V ), there exists a continuous section s : V → p−1(V ) of
the restriction p : p−1(V )→V such that s

(
p(x)

)
= x. If V is connected, then s is unique.

Proof. We can write p−1(V )=UtW such that U and W are open, x∈U , and the restriction p|U : U→
V is a homeomorphism. The inverse s = p−1

|U is clearly a continuous section of p|U , and consequently
of p by extending its codomain to p−1(V ).
If V is connected, then U is connected and is a connected component of p−1(V ). Suppose r : V → X is
another continuous section of p such that r

(
p(x)

)
= x. Since r(V )⊆ p−1(V ) and V is connected, then
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r(V ) is contained in the connected component of p−1(V ) that contains x which is U . As p
(
r(y)

)
= y

for every y ∈V , r : V →U is then the inverse of p|U : U →V .

Proposition 8.5. Let X ,Y be topological spaces, and p : X → Y a covering map. If Y0 is a subspace
of Y , and if X0 = p−1(Y0), then the map p0 : X0→ Y0 obtained by restricting p is a covering map.

Proof. Given y ∈ Y0, let V be an open set in Y containing y that is evenly covered by p. If {Ui}i∈I is
a partition of p−1(V ) into slices, then V ∩Y0 is a neighborhood of y in Y0, and {Ui∩X0}i∈I is formed
by disjoint open sets in X0 whose union is p−1(V ∩Y0). Moreover, the restriction of p to Ui∩X0 is a
homeomorphism onto V ∩Y0.

Proposition 8.6. Let X ,X ′,Y,Y ′ be topological spaces, and p : X → Y , p′ : X ′→ Y ′ covering maps.
Then p× p′ : X×X ′→ Y ×Y ′ is a covering map.

Proof. Let (y, y′) ∈ Y ×Y ′, and V,V ′ neighborhoods of y,y′ respectively, that are evenly covered by
p, p′ respectively. Let {Ui}i∈I,{U ′j} j∈J be partitions into slices of p−1(V ), p′−1(V ′) respectively. Then
(p× p′)−1(V ×V ′) =

⊔
i∈I
j∈J

Ui×U ′j. Moreover, the restriction of p× p′ to Ui×U ′j is a homeomorphism

onto V ×V ′.

8.2 Function Liftings

Definition 8.7. Let E,X ,Y be topological spaces, p : X →Y a covering map, and f : E→Y a contin-
uous function. A lifting of f is a function f̃ : E→ X such that p◦ f̃ = f .

E X

Y

f

f̃

p

Example. Consider the covering map p : R→ S1 defined by p(x) = (cos2πx, sin2πx). The path
f : [0, 1]→ S1 from (1, 0) to (−1, 0) given by f (t) = (cosπt, sinπt) lifts to the path f̃ : [0, 1]→ R
from 0 to 1

2 given by f̃ (t) = t
2 . The path g : [0, 1]→ S1 given by g(t) = (cosπt,−sinπt) from (1, 0)

to (−1, 0) lifts to the path g̃ : [0, 1]→ R from 0 to −1
2 given by g̃(t) =− t

2 .

Lemma 8.8. Let X ,Y be topological spaces, and p : X → Y a covering map. Consider the subspace

X×p X =
{
(a, b) ∈ X×X

∣∣ p(a) = p(b)
}

of the product space X×X. Then, ∆ =
{
(a, a)

∣∣ a ∈ X
}

is an open and a closed subset of X×p X.

Proof. Take (x, x) ∈ ∆ and choose an open set U ⊆ X such that x ∈U and the restriction p : U → Y
is injective. Then, (U ×U)∩ (X ×p X) = U ×p U is an open neighborhood of (x, x) in X ×p X . As
U×pU =

{
(a, b)∈U×U

∣∣ p(a) = p(b)
}
=
{
(a, a)

∣∣ a∈U
}
⊆ ∆, then ∆ is a neighborhood of points,

so is open in X×p p by Proposition 1.9.
Take (x1, x2) ∈ X ×p X \∆, and choose an evenly covered open set V ⊆ Y containing p(x1) = p(x2).
Since x1 6= x2, they cannot be in the same slice, so there exist disjoint open sets U1,U2 ∈ p−1(V ) such
that x1 ∈U1 and x2 ∈U2. Therefore, the set (U1×U2)∩ (X×p X) contains (x1, x2), is open in X×p X ,
and is included in X×p X \∆. We deduce from Proposition 1.9 that X×p X \∆ is open, so ∆ is closed
in X×p X .
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Lemma 8.9. Let X ,Y be topological spaces, p : X → Y a covering map, E a connected space, and
f : E → Y a continuous function. If g : E → X and h : E → X are two liftings of f , we have either
g = h or g(e) 6= h(e) for every e ∈ E.

Proof. Recall that X ×Y X =
{
(a, b) ∈ X ×X

∣∣ p(a) = p(b)
}

and ∆ =
{
(a, a)

∣∣ a ∈ X
}

. Consider
the continuous function Φ : E → X ×Y X defined by Φ(e) =

(
g(e), h(e)

)
. Let A =

{
e ∈ E

∣∣ g(e) =
h(e)

}
= Φ−1(∆). We know from Lemma 8.8 that ∆ is open and closed in X ×p X . Then, A is open

and closed in E. Since E is connected, either A = E or A =∅.

Theorem 8.10 (Lebesgue number). Let X be a compact metric space with metric d, Y a topological
space, O a family of open sets covering Y , and f : X →Y a continuous function. There exists ρ ∈R∗+
such that, for any x ∈ X, f

(
B(x, ρ)

)
is contained in an open set of O .

Proof. For any n ∈ N, let Xn be the set of points x ∈ X having the property that there exists U ∈ O
such that B(x, 2−n)⊆ f−1(U). For any x ∈ X , there exists U ∈O such that x ∈ f−1(U). As f−1(U) is
open, there exists n ∈ N such that B(x, 2−n)⊆ f−1(U), then

⋃
n∈N

Xn = X .

It is clear that Xn ⊆ Xn+1. Moreover, Xn ⊆ X◦n+1. Indeed, let x ∈ Xn and U ∈ O such that B(x, 2−n)⊆
f−1(U). For every z ∈ X such that d(x, z)< 2−n−1, we have B(z, 2−n−1)⊆ B(x, 2−n)⊆ f−1(U), then
z ∈ Xn+1. Hence B(x, 2−n−1)⊆ Xn+1, meaning that Xn+1 is a neighborhood of x.
The fact Xn ⊆ X◦n+1 implies

⋃
n∈N

Xn ⊆
⋃

n∈N
X◦n , and then

⋃
n∈N

X◦n = X . As X is compact, X = X◦n for some

n ∈ N, and consequently X = Xn.

Theorem 8.11. Let X ,Y be topological spaces, p : X → Y a covering map, and (a, b) ∈ X ×Y such
that p(a) = b. Any path f : [0, 1]→ Y beginning at b has a unique lifting to a path f̃ : [0, 1]→ X
beginning at a.

Proof. We know from Lemma 8.9 there exists at most one lifting f̃ : [0, 1]→ X such that f̃ (0) = a.
Then, the existence remains. Let O be a family of evenly covered open sets covering Y . We know

from Theorem 8.10 that there exist n ∈ N and V1, . . . ,Vn ∈ O such that f
([ i−1

n
,

i
n

])
⊆ Vi for every

i∈{1, . . . ,n}. We recursively define n continuous functions gi :
[ i−1

n
,

i
n

]
→X for every i∈{1, . . . ,n}

such that

• ∀t ∈
[ i−1

n
,

i
n

]
, p
(
gi(t)

)
= f (t),

• g1(0) = a, and gi

( i
n

)
= gi+1

( i
n

)
.

Using Proposition 8.4, we deduce the existence of a section s1 : V1 → p−1(V1) of the restriction

p : p−1(V1)→V1 such that s1
(

p(a)
)
= a. Then, we may define g1 :

[
0,

1
n

]
→ X by g1(t) = s1

(
f (t)
)
.

Suppose that gi has already been defined, and consider a section si+1 : Vi+1→ p−1(Vi+1) of the restric-

tion p : p−1(Vi+1)→ Vi+1 such that si+1

(
f
( i

n

))
= si+1

(
p
(

gi

( i
n

)))
= gi

( i
n

)
. We may define

gi+1 :
[ i

n
,

i+1
n

]
→ X by gi+1(t) = si+1

(
f (t)
)
. Hence g1 ∗g2 ∗ · · · ∗gn is the required lifting f̃ .
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Proposition 8.12. Let X ,Y be topological spaces, p : X→Y a covering map, and (a, b)∈ X×Y such
that p(a) = b. Consider a continuous function F : [0, 1]× [0, 1]→ Y such that F(0, 0) = b. There
exists a unique lifting of F to a continuous function

F̃ : [0, 1]× [0, 1]→ X such that F̃(0, 0) = a.

Proof. We know from Lemma 8.9 there exists at most one lifting F̃ : [0, 1]× [0, 1]→ X such that
F̃(0, 0) = a. Then, the existence remains.

Let O be a family of evenly covered open sets covering Y . We know from Theorem 8.10 that

there exist m,n ∈ N and V11, . . . ,Vmn ∈ O such that F
([ i−1

m
,

i
m

]
×
[ j−1

n
,

j
n

])
⊆ Vi j for every

(i, j) ∈ {1, . . . ,m}×{1, . . . ,n}. We recursively define on each row and from the bottom to the top mn

continuous functions F̃i j :
[ i−1

m
,

i
m

]
×
[ j−1

n
,

j
n

]
→ X for every (i, j)∈ {1, . . . ,m}×{1, . . . ,n} such

that

• ∀(s, t) ∈
[ i−1

n
,

i
n

]
×
[ j−1

n
,

j
n

]
, p
(
F̃i j(s, t)

)
= F(s, t),

• F̃11(0, 0) = a and F̃i1

( i
m
, 0
)
= F̃i+11

( i
m
, 0
)

,

• F̃1 j+1

(
0,

j
n

)
= F̃1 j

(
0,

j
n

)
and F̃i1+1

( i
m
,

j
n

)
= F̃i+1 j+1

( i
m
,

j
n

)
.

Using Proposition 8.4, we deduce the existence of a section s11 : V11 → p−1(V11) of the restriction

p : p−1(V11)→ V11 such that s11
(

p(a)
)
= a. Then, we may define F̃11 :

[
0,

1
m

]
×
[
0,

1
n

]
→ X by

F̃11(s, t) = s11
(
F(s, t)

)
. Suppose that F̃11, . . . , F̃i j have already been defined, and consider a section

si+1, j : Vi+1, j→ p−1(Vi+1, j) of the restriction p : p−1(Vi+1, j)→Vi+1, j such that

si+1, j

(
F
( i

m
,

j
n

))
= si+1, j

(
p
(

F̃i j

( i
m
,

j
n

)))
= F̃i j

( i
m
,

j
n

)
.

We may define F̃i+1, j :
[ i

m
,

i+1
m

]
×
[ j

n
,

j+1
n

]
→ X by F̃i+1, j = si+1

(
F(s, t)

)
.

Remark that, due to the uniqueness of the lifting of the path F
( i

m
,

j−1+ t
n

)
with variable t beginning

at F̃i j

( i
m
,

j−1
n

)
= F̃i+1 j

( i
m
,

j−1
n

)
, we have

∀(s, t) ∈
{ i

m

}
×
[ j−1

n
,

j
n

]
, F̃i j(s, t) = F̃i+1 j(s, t).

Using the same argument with the lifting beginning at F̃i j

( i
m
,

j
n

)
= F̃i j+1

( i
m
,

j
n

)
, we get

∀(s, t) ∈
[ i−1

m
,

i
m

]
×
{ j

n

}
, F̃i j(s, t) = F̃i j+1(s, t).

Hence, F̃ = F̃i j on
[ i−1

m
,

i
m

]
×
[ j−1

n
,

j
n

]
→ X , for every (i, j) ∈ {1, . . . ,m}× {1, . . . ,n}, is the

required lifting of F .
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Corollary 8.13. Let X ,Y be topological spaces, p : X → Y a covering map, and (a, b) ∈ X ×Y such
that p(a) = b. Consider two paths f : [0, 1]→ Y and g : [0, 1]→ Y beginning at b and ending c, and
their respective liftings f̃ and g̃ beginning at a. The following conditions are equivalent:

(i) f and g are path homotopic,

(ii) f̃ (1) = g̃(1) and f̃ , g̃ are path homotopic.

Proof. (i)⇒ (ii) : Consider a path homotopy F : [0, 1]× [0, 1]→Y such that F(0, t) = f (t), F(1, t) =
g(t), F(s, 0) = b, and F(s, 1) = c. Let F̃ : [0, 1]× [0, 1]→ X the lifting of F such that F̃(0, 0) = a
described in Proposition 8.12. Path lifting uniqueness implies F̃(0, t)= f̃ (t) and F̃(1, t)= g̃(t). More-
over, F̃(s, 0) and F̃(s, 1) are the liftings of eb and ec respectively, so must be constant. Consequently,
f̃ (1) = g̃(1) and F̃ is a path homotopy between f̃ and g̃.

(ii)⇒ (i) : If f̃ and g̃ are path homotopic with path homotopy F̃ , then p◦ f̃ = f and p◦ g̃ = g are path
homotopic with path homotopy p◦ F̃ .

Definition 8.14. Let X ,Y be topological spaces, and p : X→Y a covering map. Let b ∈Y and choose
a ∈ X so that p(a) = b. Given an element [ f ] of π1(Y,b) , let f̃ : [0,1]→ X be the lifting of f to a path
in X that begins at a. Define the function

φ : π1(Y,b)→ p−1(b), [ f ] 7→ f̃ (1).

One calls φ the lifting correspondence derived from the covering map p and the origin a.

Proposition 8.15. Let X ,Y be topological spaces, and p : X → Y a covering map. Let b ∈ Y and
choose a ∈ X so that p(a) = b. If X is path connected, then the lifting correspondence

φ : π1(Y,b)→ p−1(b), [ f ] 7→ f̃ (1)

is surjective. If X is simply connected, then φ is bijective.

Proof. Let a′ ∈ p−1(b), and f̃ : [0, 1]→ X a path from a to a′. The path f̃ is the lifting of f = p ◦ f̃
which is a loop in Y at b, then φ

(
[ f ]
)
= a′, and φ is consequently surjective.

Suppose that X is simply connected. Take [ f ], [g] ∈ π1(Y,b) such that φ
(
[ f ]
)
= φ

(
[g]
)
. Let f̃ and g̃ be

the liftings of f and g respectively that begin at a. Then f̃ (1) = g̃(1). The fact X is simply connected
implies the existence of a path homotopy F̃ between f̃ and g̃. Then p◦ F̃ is path homotopy between
f and g, that is [ f ] = [g].

Theorem 8.16. The group π1
(
S1, (1, 0)

)
is isomorphic to the additive group (Z,+).

Proof. Consider the covering map p :R→S1 given by p(x)= (cos2πx, sin2πx). We have p−1
(
(1, 0)

)
=

Z. Since R is simply connected, we deduce from Proposition 8.15 that the lifting correspondence

φ : π1
(
S1, (1, 0)

)
→ Z, [ f ] 7→ f̃ (1)

is bijective. It remains to show that φ is a homeomorphism.

Given [ f ], [g] ∈ π1
(
S1, (1, 0)

)
, let f̃ , g̃ be their respective liftings to paths in R beginning at 0. Denote

n = f̃ (1) and m = g̃(1). Define the path

˜̃g : [0, 1]→ R, t 7→ n+ g̃(t).
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Since p ◦ ˜̃g(t) = p
(
n+ g̃(t)

)
= p

(
g̃(t)

)
, the path ˜̃g is then the lifting of g that begins at n. Then

f̃ ∗ ˜̃g : [0, 1]→R is defined, and is the lifting of f ∗g that begins at 0. As f̃ ∗ ˜̃g(1) = ˜̃g(1) = n+m, we
obtain

φ
(
[ f ]∗ [g]

)
= n+m = φ

(
[ f ]
)
+φ
(
[g]
)
.
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Chapter 9

Homotopy

9.1 Homotopy of Functions

Definition 9.1. Let X ,Y be topological spaces, and f ,g continuous functions from X into Y . One says
that f is homotopic to g if there is a continuous function F : X× [0,1]→ Y such that

∀x ∈ X , F(x,0) = f (x) and F(x,1) = g(x).

In that case, one writes f ' g. The function F is called a homotopy between f and g.

Lemma 9.2. The relation ' on homotopic functions is an equivalence relation.

Proof. Given a function f , the function F(x, t) = f (x) is the required homotopy to get f ' f .

If f ' g is got by a homotopy F(x, t), then G(x, t) = F(x, 1− t) is a homotopy between g and f .

Suppose that f ' g by means of a homotopy F , and g' h by means of a homotopy G, then f ' h by
means of the homotopy H : X× [0,1]→ Y defined by the equation

H(x, t) =

{
F(x, 2t) if t ∈

[
0, 1

2

]
,

G(x, 2t−1) if t ∈
[1

2 , 1
]
.

Definition 9.3. Let X be a topological space, and A ⊆ X . A retraction of X onto A is a continuous
function r : X → A such that the restriction r : A→ A is the identity map of A. If such a function r
exists, one says that A is a retract of X .

Definition 9.4. Let X be a topological space, and A ⊆ X . Suppose that there exists a continuous
function F : X× [0,1]→ X such that

∀x ∈ X , F(x,0) = x and F(x,1) ∈ A,

∀t ∈ [0,1], ∀a ∈ A, F(a, t) = a.

The homotopy F between the identity map F(x,0) of X and the retraction F(x,1) of X onto A is called
a deformation retraction of X onto A, and A is called a deformation retract of X .

Proposition 9.5. Let X be a topological space, A ⊆ X, and x ∈ A. Consider the homomorphism
i∗ : π1(A, x)→ π1(X , x) induced by the inclusion map i : A ↪→ X.
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(i) If A is a retract of X, then i∗ is injective.

(ii) If A is a deformation retract of X, then i∗ is bijective.

Proof. (i) : If r : X→ A is a retraction, then r◦ i is the identity map of A. It follows that (r◦ i)∗ = r∗ ◦ i∗
is the identity map of π1(A, x), which implies that i∗ is injective.
(ii) : Suppose that F : X × [0,1]→ X is a deformation retraction of X onto A. Since F(X , 1) = A,
then for any loop f : [0, 1]→ X based at x, F

(
f (.), .

)
is a homotopy between f and a loop F

(
f (.), 1

)
in A. Moreover, as F

(
f (0), t

)
= F

(
f (1), t

)
= x for every t ∈ [0, 1], then f 'p F

(
f (.), 1

)
. Hence[

F
(

f (.), 1
)]

= [ f ], meaning that [ f ] = i∗

([
F
(

f (.), 1
)])

, and i∗ is consequently surjective.

Example. There is no retraction of th real disc B
(
(0,0), 1

)
onto S1. Suppose, indeed, that S1 is

a retract of B
(
(0,0), 1

)
. According to Proposition 9.5, the homomorphism i∗ : π1

(
S1, (1, 0)

)
→

π1

(
B
(
(0,0), 1

)
, (1, 0)

)
induced by the inclusion map i : S1 ↪→ B

(
(0,0), 1

)
is injective. That is im-

possible, since π1
(
S1, (1, 0)

)∼= Z and π1

(
B
(
(0,0), 1

)
, (1, 0)

)
∼= 0.

9.2 Homotopy Equivalence

Definition 9.6. Let X ,Y be a topological spaces, and f : X → Y , g : Y → X continuous functions.
Suppose that g ◦ f : X → X is homotopic to the identity map of X , and f ◦ g : Y → Y to the identity
map of Y . Then, the functions f and g are said to be homotopy equivalent, and each is called a
homotopy inverse of the other.

Proposition 9.7. Let X ,Y be topological spaces, and F : X× [0, 1]→ Y a homotopy between contin-
uous functions f = F(., 0) and g = F(., 1). Take x ∈ X, and consider the path h = F(x, .) from f (x)
to g(x). Then, the following diagram is commutative:

π1(X , x) π1
(
Y, f (x)

)
π1
(
Y, g(x)

)g∗

f∗

ĥ

Proof. Let l : [0, 1]→ X be a loop based at x. Consider the continuous function

L : [0, 1]× [0, 1]→ Y, (s, t) 7→ F
(
l(s), t

)
,

and the points p1 = (0, 0), p2 = (1, 0), p3 = (0, 1), p4 = (1, 1). Denoting Li j the standard parametri-
sation of L restricted to the edge from pi to p j, where i, j ∈ {1,2,3,4} and i < j, we get L12 ∗L24 'p

L14 and L13 ∗ L34 'p L14 by Lemma 7.16, hence L12 ∗ L24 'p L13 ∗ L34. Remark that L12 = f ◦ l,
L13 = L24 = h, L34 = g◦ l, hence

f ◦ l ∗h = h∗g◦ l

[ f ◦ l]∗ [h] = [h]∗ [g◦ l]

[h̄]∗ [ f ◦ l]∗ [h] = [g◦ l]

ĥ◦ f∗
(
[l]
)
= g∗

(
[l]
)
.
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Corollary 9.8. Let X be a topological space, and f : X → X a continuous function that is homotopic
to the identity map of X. Then, for any x ∈ X, the function f∗ : π1(X , x)→ π1

(
X , f (x)

)
is a group

isomorphism.

Proof. Let F : X× [0, 1]→X be a homotopy between the identity map F(., 0)= i of X and F(., 1)= f ,
and consider the path h = F(x, .) from x to f (x). Proposition 9.7 implies that f∗ = ĥ◦ i∗ = ĥ, which is
a isomorphism from π1(X , x) to π1

(
X , f (x)

)
by Proposition 7.11.

Lemma 9.9. Let A,B,C,D be sets, and f ,g,h functions represented by the following diagram:

A
f−→ B

g−→C h−→ D.

If g◦ f is bijective and h◦g is injective, then f is bijective.

Proof. As g◦ f is injective, then f is injective.
Take b ∈ B. As g◦ f is surjective, there exists a ∈ A such that g◦ f (a) = g(b). Remark that g is also
injective since h◦g is injective. The injectivity of g implies f (a) = b, hence h is surjective.

Theorem 9.10. Let X ,Y be topological spaces, x ∈ X, and f : X → Y a continuous function. If there
exists a continuous function g : Y → X homotopy equivalent to f , then f∗ : π1(X , x)→ π1

(
Y, f (x)

)
is

an isomorphism.

Proof. Consider the following sequence of homomorphisms:

π1(X , x)
f∗−−→ π1

(
Y, f (x)

) g∗−−→ π1
(
X , g◦ f (x)

) f∗−−→ π1
(
Y, f ◦g◦ f (x)

)
.

We know from Corollary 9.8 that g∗ ◦ f∗ and f∗ ◦g∗ are isomorphisms. Morevore, we can deduce from
Lemma 9.9 that f∗ is bijective.
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Chapter 10

Singular Homology

10.1 Singular Homology

Proposition 10.1. Let u0,u1, . . . ,up ∈ Rn. The following conditions are equivalent:

(i) the p vectors −−→u0u1,
−−→u0u2, . . .

−−→u0up are linearly independent,

(ii) if s0,s1, . . . ,sp, t0, t1, . . . , tp ∈ R such that

p

∑
i=0

siui =
p

∑
i=0

tiui and
p

∑
i=0

si =
p

∑
i=0

ti,

then si = ti for i ∈ {0,1, . . . , p}.

Proof. (i)⇒ (ii) : If
p

∑
i=0

siui =
p

∑
i=0

tiui and
p

∑
i=0

si =
p

∑
i=0

ti, then

0 =
p

∑
i=0

(si− ti)ui

=
p

∑
i=0

(si− ti)ui−
( p

∑
i=0

(si− ti)
)

u0

=
p

∑
i=1

(si− ti)(ui−u0).

As −−→u0u1,
−−→u0u2, . . .

−−→u0up are linearly independent, it follows that si = ti for i ∈ {1, . . . , p}. Moreover,
p

∑
i=0

si =
p

∑
i=0

ti implies s0 = t0.

(ii)⇒ (i) : If
p

∑
i=1

ti(ui−u0) = 0, then
p

∑
i=1

tiui =
( p

∑
i=1

ti
)

u0. Hence, we must have t1 = · · ·= tn = 0.

Definition 10.2. Let n ∈ N, p ∈ {1, . . . ,n}, and u0,u1, . . . ,up ∈ Rn. A p-simplex [u0,u1, . . . ,up] is a
convex hull {

t0u0 + t1u1 + · · ·+ tpup

∣∣∣ t0, t1, . . . , tp ∈ R+,
p

∑
i=0

ti = 1
}

with ordered vertices u0,u1, . . . ,up such that the p vectors−−→u0u1,
−−→u0u2, . . .

−−→u0up are linearly independent.
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Corollary 10.3. If [u0,u1, . . . ,up] is a p-simplex in Rn, then every point of [u0,u1, . . . ,up] has a distinct

unique representation in the form
p

∑
i=0

tiui, with t0, t1, . . . , tp ∈ R+ and
p

∑
i=0

ti = 1.

Proof. It is Proposition 10.1 with the conditions t0, t1, . . . , tp ∈ R+ and
p

∑
i=0

ti = 1.

Example. The standard n-simplex is convex hull

∆
n :=

{
(t0, t1, . . . , tn) ∈ Rn+1

∣∣∣ t0, t1, . . . , tp ∈ R+,
n

∑
i=0

ti = 1
}
= [e0,e1, . . . ,en]

of the ordered vertices e0 = (0, . . . ,0), e1 = (1,0, . . . ,0), . . . , en = (0, . . . ,0,1).

Definition 10.4. Let X be a topological space. A singular n-simplex in X is a continuous function

σ : ∆
n→ X .

Denote Sn(X) the set of singular n-simplices in X . Let Cn(X) be the free abelian group with basis
Sn(X), that is,

Cn(X) :=
{

∑
a∈A

naσa

∣∣∣ #A ∈ N, na ∈ Z, σa ∈ Sn(X)
}
.

Elements of Cn(X) are called singular n-chains.

Definition 10.5. Let X be a topological space, and i ∈ {0,1, . . . ,n}. The ith face operator is the
homomorphism

∂i : Cn(X)→Cn−1(X), ∑
a∈A

naσa 7→ ∑
a∈A

naσa|[e0,e1, . . . , êi, . . . ,en],

where [e0,e1, . . . , êi, . . . ,en] is the n−1-simplex with vertices e0, . . . ,ei−1,ei+1, . . . ,en.
The boundary operator is the homomorphism

∂ : Cn(X)→Cn−1(X), σ 7→
n

∑
i=0

(−1)i
∂i(σ).

Proposition 10.6. Let X be a topological space. The following composition is zero:

Cn(X)
∂−→Cn−1(X)

∂−→Cn−2(X).

Proof. For σ ∈Cn(X), we have ∂ (σ) =
n

∑
i=0

(−1)i
σ |[e0, . . . , êi, . . . ,en]. Remark that

∂σ |[e0, . . . , êi, . . . ,en] =
i−1

∑
j=0

(−1) j
σ |[e0, . . . , ê j, . . . , êi, . . . ,en]+

n

∑
j=i+1

(−1) j−1
σ |[e0, . . . , êi, . . . , ê j, . . . ,en].

Then,

∂ ◦∂ (σ) =
n

∑
i=0

i−1

∑
j=0

(−1)i+ j
σ |[e0, . . . , ê j, . . . , êi, . . . ,en]+

n

∑
i=0

n

∑
j=i+1

(−1)i+ j−1
σ |[e0, . . . , êi, . . . , ê j, . . . ,en]

= ∑
i, j∈{0,...,n}

i> j

(−1)i+ j
σ |[e0, . . . , ê j, . . . , êi, . . . ,en]+ ∑

i, j∈{0,...,n}
i< j

(−1)i+ j−1
σ |[e0, . . . , êi, . . . , ê j, . . . ,en]

= 0.
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Definition 10.7. Let X be a topological space. The singular complex C•(X) of X is the homomor-
phism sequence

· · · ∂−→Cn+1(X)
∂−→Cn(X)

∂−→Cn−1(X)
∂−→ ·· · ∂−→C1(X)

∂−→C0(X)
∂−→ 0.

The group of singular n-cycles of X is Zn(X) :=
{

σ ∈ Cn(X)
∣∣ ∂ (σ) = 0

}
. The group of singular

n-boundaries of X is Bn(X) :=
{

σ ∈Cn(X)
∣∣ ∃τ ∈Cn+1(X), ∂ (τ) = σ

}
. The quotient group

Hn(X) = Zn(X)/Bn(X)

is the nth singular homology group of X .

Example. If x is a point, then H0
(
{x}
)∼=Z, and Hn

(
{x}
)
= 0 for n∈N. Indeed, for every nonnegative

integer n, Cn
(
{x}
)
= Z{σ}, where σ : ∆n→{x}, t 7→ x. Moreover, for every zσ ∈Cn

(
{x}
)
,

∂ (zσ) =
n

∑
i=0

(−1)i
∂i(zσ) =

n

∑
i=0

(−1)izσ =

{
zσ if n is even and n 6= 0,
0 if n is odd.

The singular complex of {x} is then

· · · 0−→ Z{σ} restriction−−−−−−→ Z{σ} 0−→ Z{σ} restriction−−−−−−→ Z{σ} 0−→ Z{σ} 0−→ 0.

Hence,

• Z0
(
{x}
)
= Z{σ} and B0

(
{x}
)
= {0}, implying H0

(
{x}
)
= Z{σ}/{0} ∼= Z,

• if n is even and n 6= 0, Zn
(
{x}
)
= {0} and Bn

(
{x}
)
= {0}, then Hn

(
{x}
)
= {0}/{0}= {0},

• if n is odd, Zn
(
{x}
)
= Z{σ} and Bn

(
{x}
)
= Z{σ}, then Hn

(
{x}
)
= Z{σ}/Z{σ} ∼= {0}.

Proposition 10.8. Let X be a topological space. Suppose that X =
⊔
i∈I

Xi, where Xi is a path compo-

nent. Then,
Hn(X)∼=

⊕
i∈I

Hn(Xi).

Proof. Let σ be a singular n-simplex in X . Since ∆n is path connected, then σ(∆n) is path con-
nected, meaning that σ(∆n) ⊆ Xi for some i ∈ I. Then Cn(X) =

⊕
i∈I

Cn(Xi). Moreover, ∂
(
Cn(Xi)

)
⊆

Cn−1(Xi), hence Zn(X) =
⊕
i∈I

Zn(Xi) and Bn(X) =
⊕
i∈I

Bn(Xi). Consider the natural homomorphism

p :
⊕
i∈I

Zn(Xi) 7→
⊕
i∈I

Zn(Xi)/Bn(Xi), (σi)i∈I 7→ (σ̇i)i∈I which the canonical projection on each coordi-

nate. It is obviously surjective, and ker p =
⊕
i∈I

Bn(Xi). Therefore

Hn(X) =
⊕
i∈I

Zn(Xi)/
⊕
i∈I

Bn(Xi)∼=
⊕
i∈I

Zn(Xi)/Bn(Xi) =
⊕
i∈I

Hn(Xi).
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Proposition 10.9. Let X be a topological space. Suppose that X =
⊔
i∈I

Xi, where Xi is a path compo-

nent. Then,

H0(X)∼=
#I times︷ ︸︸ ︷

· · ·⊕Z⊕Z⊕Z⊕·· · .

Proof. Define a homomorphism h : C0(Xi)→ Z, ∑
j∈J

n jσ j 7→ ∑
j∈J

n j. It is obviously surjective as Xi is

assumed to be nonempty. For every σ ∈ S1(Xi), we have h◦ ∂ (σ) = h
(
σ |[e1]−σ |[e0]

)
= 1−1 = 0.

It follows that
{

τ ∈C0(Xi)
∣∣ ∃σ ∈C1(Xi), ∂ (σ) = τ

}
= B0(Xi)⊆ kerh.

Now, let ∑
j∈J

n jσ j ∈C0(Xi) such that h
(

∑
j∈J

n jσ j

)
= 0. Take a point x∈ Xi and note that, for each j ∈ J,

there exists a singular 1-simplex τ j : [e0, e1]→ Xi such that τ j(e0) = σ(e0) and τ j(e1) = x. We have

∂

(
∑
j∈J

n jτ j

)
= ∑

j∈J
n jσ j−

(
∑
j∈J

n j

)
φ = ∑

j∈J
n jσ j with φ : [e0]→ Xi, e0 7→ x.

Hence kerh⊆
{

σ ∈C0(Xi)
∣∣ ∃τ ∈C1(Xi), ∂ (τ) = σ

}
= B0(Xi).

We deduce that B0(Xi) = kerh. Therefore

H0(Xi) = Z0(Xi)/B0(Xi) =C0(Xi)/kerh∼= h
(
C0(Xi)

)
= Z.

Finally, we get H0(X)∼=
#I times︷ ︸︸ ︷

· · ·⊕Z⊕Z⊕Z⊕·· · by Proposition 10.8.

10.2 Homotopy Invariance

Definition 10.10. Let X ,Y be topological spaces, and f : X → Y a continuous function. The homo-
morphism induced on singular n-chains by f is

f] : Cn(X)→Cn(Y ), ∑
a∈A

naσa 7→ ∑
a∈A

na f ◦σa.

Lemma 10.11. Let X ,Y be topological spaces, and f : X → Y a continuous function. The following
diagram is commutative:

· · · Cn+1(X) Cn(X) Cn−1(X) · · ·

· · · Cn+1(Y ) Cn(Y ) Cn−1(Y ) · · ·

∂ ∂

f]

∂

f]

∂

f]

∂ ∂ ∂ ∂

Proof. Let σ ∈Cn(X). We have

f] ◦∂ (σ) = f]
( n

∑
i=0

(−1)i
σ |[e0,e1, . . . , êi, . . . ,en]

)
=

n

∑
i=0

(−1)i f] ◦σ |[e0,e1, . . . , êi, . . . ,en]

= ∂ ( f] ◦σ).
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Proposition 10.12. Let X ,Y be topological spaces, and f : X → Y a continuous function. Then, f]
induces a homomorphism

f? : Hn(X)→ Hn(Y ), σ +Bn(X) 7→ f](σ)+Bn(Y ).

Proof. Using Lemma 10.11:

• If σ ∈ Zn(X), then ∂
(

f](σ)
)
= f]

(
∂ (σ)

)
= f](0) = 0, so f]

(
Zn(X)

)
⊆ Zn(Y ),

• if σ ∈Cn+1(X), then f]
(
∂ (σ)

)
= ∂

(
f](σ)

)
, so f]

(
Bn(X)

)
⊆ Bn(Y ).

Hence, for every σ +Bn(X) ∈ Hn(X), f?
(
σ +Bn(X)

)
= f](σ)+Bn(Y ) ∈ Hn(Y ) is well-defined. And

f?
(
σ +τ +Bn(X)

)
= f](σ +τ)+Bn(Y ) = f](σ)+ f](τ)+Bn(Y ) = f?

(
σ +Bn(X)

)
+ f?

(
τ +Bn(X)

)
.

Definition 10.13. Let X ,Y be topological spaces, and f : X → Y a continuous function. The homo-
morphism induced on homology groups by f is

f? : Hn(X)→ Hn(Y ), σ +Bn(X) 7→ f](σ)+Bn(Y ).

Proposition 10.14. Let X ,Y,Z be topological spaces, and f : X →Y , g : Y → Z continuous functions.
In particular, let iX : X→ X and i : Hn(X)→Hn(X) be the identity maps of X and Hn(X) respectively.
Then,

(i) (g◦ f )? = g? ◦ f?,

(ii) (iX)? = i.

Proof. (i) : If ∑
a∈A

naσa ∈Cn(X), we have

g] ◦ f]
(

∑
a∈A

naσa

)
= g]

(
∑
a∈A

na f ◦σa

)
= ∑

a∈A
nag◦ f ◦σa = (g◦ f )]

(
∑
a∈A

naσa

)
.

Hence, if σ +Bn(X) ∈ Hn(X),

g? ◦ f?
(
σ +Bn(X)

)
= g?

(
f](σ)+Bn(Y )

)
= g] ◦ f](σ)+Bn(Z)

= (g◦ f )](σ)+Bn(Z)

= (g◦ f )?
(
σ +Bn(X)

)
.

(ii) : For σ +Bn(X) ∈ Hn(X), (iX)?
(
σ +Bn(X)

)
= (iX)](σ)+Bn(X) = σ +Bn(X).

For a nonnegative integer n, set ∆n×{0} := [e0
0,e

0
1, . . . ,e

0
n] and ∆n×{1} := [e1

0,e
1
1, . . . ,e

1
n] such that e0

i
and e1

i have the same image ei under the projection ∆n×{0, 1}→ ∆n, where i ∈ {0,1, . . . ,n}.

Proposition 10.15. Let n be a nonnegative integer. Then

∆
n× [0, 1] =

n⋃
i=0

[e0
0, . . . ,e

0
i−1,e

0
i ,e

1
i ,e

1
i+1, . . . ,e

1
n].
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Proof. Let u =
i

∑
j=0

t0
j e0

j +
n

∑
j=i

t1
j e1

j ∈ [e0
0, . . . ,e

0
i−1,e

0
i ,e

1
i ,e

1
i+1, . . . ,e

1
n]. If u = (λ0,λ1, . . . ,λn+1), then

n

∑
k=0

λk =
i

∑
j=0

t0
j +

n

∑
j=i

t1
j = 1 and λn+1 =

n

∑
j=i

t1
j ∈ [0, 1].

Hence [e0
0, . . . ,e

0
i−1,e

0
i ,e

1
i ,e

1
i+1, . . . ,e

1
n]⊆ ∆n× [0, 1].

Now, take (λ0,λ1, . . . ,λn+1) ∈ ∆n× [0, 1]. Let i = max
{

j ∈ {0,1, . . . ,n}
∣∣∣ n

∑
j=i

λ j ≥ λn+1

}
. Then,

(λ0,λ1, . . . ,λn+1) =
i−1

∑
j=0

λ je0
j +
(

λi−λn+1 +
n

∑
j=i

λ j

)
e0

i +
(

λn+1−
n

∑
j=i

λ j

)
e1

i +
n

∑
j=i+1

λ je1
j

which belongs to [e0
0, . . . ,e

0
i ,e

1
i , . . . ,e

1
n]. Hence ∆

n× [0, 1]⊆
n⋃

i=0

[e0
0, . . . ,e

0
i ,e

1
i , . . . ,e

1
n].

Definition 10.16. Let X ,Y be topological spaces, id : [0, 1]→ [0, 1] the identity map, and F : X ×
[0, 1]→ Y a continuous function. The composition F ◦ (σ × id) : ∆n× [0, 1]→ X × [0, 1]→ Y is
well-defined and the prism operator of F is the function

P : Cn(X)→Cn+1(Y ), σ 7→
n

∑
i=0

(−1)iF ◦ (σ × id)|[e0
0, . . . ,e

0
i−1,e

0
i ,e

1
i ,e

1
i+1, . . . ,e

1
n].

Proposition 10.17. Let X ,Y be topological spaces, f : X → Y , g : X → Y continuous functions, and
F : X× [0, 1]→ Y a homotopy between f and g. Then,

∂ ◦P = g]− f]−P◦∂ .

Proof. Denote

F0
i, j = F ◦ (σ × id)|[e0

0, . . . , ê
0
j , . . . ,e

0
i ,e

1
i , . . . ,e

1
n] and F1

i, j = F ◦ (σ × id)|[e0
0, . . . ,e

0
i ,e

1
i , . . . , ê1

j , . . . ,e
1
n].

We have

∂ ◦P(σ) = ∂

( n

∑
i=0

(−1)iF ◦ (σ × id)|[e0
0, . . . ,e

0
i−1,e

0
i ,e

1
i ,e

1
i+1, . . . ,e

1
n]
)

=
n

∑
i=0

(−1)i
∂

(
F ◦ (σ × id)|[e0

0, . . . ,e
0
i−1,e

0
i ,e

1
i ,e

1
i+1, . . . ,e

1
n]
)

=
n

∑
i=0

(−1)i
( i

∑
j=0

(−1) jF0
i, j +

n

∑
j=i
(−1) j+1F1

i, j

)
=

n

∑
i=0

i

∑
j=0

(−1)i+ jF0
i, j +

n

∑
i=0

n

∑
j=i
(−1)i+ j+1F1

i, j

Remark that [e0
0, . . . ,e

0
i , ê

1
i ,e

1
i+1, . . . ,e

1
n] = [e0

0, . . . ,e
0
i , ê

0
i+1,e

1
i+1, . . . ,e

1
n], which implies F1

i,i = F0
i+1,i+1.

Hence

∂ ◦P(σ) = F0
0,0 +

n

∑
i=0

i−1

∑
j=0

(−1)i+ jF0
i, j +

n

∑
i=0

n

∑
j=i+1

(−1)i+ j+1F1
i, j−F1

n,n.
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Note that F0
0,0 = F ◦ (σ × id)|[ê0

0,e
1
0,e

1
1, . . . ,e

1
n] = g] and F1

n,n = F ◦ (σ × i)|[e0
0, . . . ,e

0
n−1,e

0
n, ê1

n] = f].
Moreover,

P◦∂ (σ) = P
( n

∑
i=0

(−1)i
σ |[e0, . . . , êi, . . . ,en]

)
=

n

∑
i=0

(−1)i
n

∑
j=i+1

(−1) jF1
i, j +

n

∑
i=0

(−1)i−1
i−1

∑
j=0

(−1) jF0
i, j

=
n

∑
i=0

i−1

∑
j=0

(−1)i+ j−1F0
i, j +

n

∑
i=0

n

∑
j=i+1

(−1)i+ jF1
i, j.

Therefore ∂ ◦P = g]−P◦∂ − f].

Theorem 10.18. Let X ,Y be topological spaces, and f : X →Y , g : X →Y continuous functions. If f
and g are homotopic, then f? = g?.

Proof. Let P be the prism operator of a homotopy between f and g. If σ ∈ Zn(X), we then know
from Proposition 10.17 that g](σ)− f](σ) = ∂ ◦P(σ)+P◦∂ (σ) = ∂ ◦P(σ), since ∂ (σ) = 0. Thus
g](σ)− f](σ)∈ Bn(Y ), meaning that g](σ)+Bn(Y ) = f](σ)+Bn(Y ). So, for all σ +Bn(X)∈Hn(X),

g?
(
σ +Bn(X)

)
= g](σ)+Bn(Y ) = f](σ)+Bn(Y ) = f?

(
σ +Bn(X)

)
.

Corollary 10.19. Let X ,Y be topological spaces, and f : X → Y a continuous function. If f is homo-
topy equivalent some function, then f? : Hn(X)→ Hn(Y ) is an isomorphism.

Proof. Let g : Y → X be a function homotopy equivalent to f . Moreover, let iX , iY , iHn(X), iHn(Y ) be the
identity maps of X ,Y,Hn(X),Hn(Y ) respectively. Using Proposition 10.14 and Theorem 10.18, we get

• g? ◦ f? = (g◦ f )? = (iX)? = iHn(X),

• f? ◦g? = ( f ◦g)? = (iY )? = iHn(Y ).

Hence, g? = f−1
? , which implies that f? is an isomorphism.

Example. If X is a convex set in Rn, then H0(X)∼= Z, and Hn(X) = 0 for n ∈ N. Indeed, if a ∈ X , the
function

F : X× [0, 1]→ X , (x, t) 7→ ta+(1− t)x

is a deformation retraction of X onto {a}. Consider both functions

f : X →{a}, x 7→ a and g : {a}→ X , x→ x.

Denoting iX , i{a} the identity maps of X and {a} respectively, we see that

• g◦ f = f which is homotopic to iX by the deformation retraction F ,

• f ◦g = i{a}.

Hence, f and g are homotopy equivalent. We deduce from Corollary 10.19 that f? : Hn(X)→Hn
(
{a}
)

is an isomorphism.
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10.3 Relative Homology Groups

Definition 10.20. Let X be a topological space, and A⊆ X . The free abelian subgroup Cn(A) is

Cn(A) :=
{

∑
i∈I

niσi ∈Cn(X)
∣∣∣ σi(∆

n)⊆ A
}
.

The relative n-chains are the elements of the quotient group Cn(X , A) :=Cn(X)/Cn(A).

Lemma 10.21. Let X be a topological space, and A ⊆ X. The boundary operator ∂ : Cn(X)→
Cn−1(X) induces the quotient boundary operator

∂̇ : Cn(X , A)→Cn−1(X , A), σ +Cn(A) 7→ ∂̇ (σ)+Cn−1(A).

Proof. Let τ = ∑
i∈I

niτi ∈ Cn(A) and j ∈ {0,1, . . . ,n}. Since τi|[e0,e1, . . . , ê j, . . . ,en](∆
n−1) ⊆ A, then

∂ (τ) ∈Cn−1(A). Hence ∂
(
Cn(A)

)
⊆Cn−1(A), and ∂̇ : Cn(X , A)→Cn−1(X , A) is well-defined.

Definition 10.22. Let X be a topological space, and A ⊆ X . The relative complex C•(X , A) of X
relative to A is

· · · ∂̇−→Cn+1(X , A) ∂̇−→Cn(X , A) ∂̇−→Cn−1(X , A) ∂̇−→ ·· · ∂̇−→C1(X , A) ∂̇−→C0(X , A) ∂̇−→ 0.

The group of relative n-cycles of X relative to A is

Zn(X , A) :=
{

σ +Cn(A) ∈Cn(X , A)
∣∣ ∂ (σ) ∈Cn−1(A)

}
.

The group of relative n-boundaries of X relative to A is

Bn(X , A) :=
{

σ +Cn(A) ∈Cn(X , A)
∣∣ ∃τ ∈Cn+1(X), υ ∈Cn(A), ∂ (τ) = σ +υ

}
.

The quotient group
Hn(X , A) = Zn(X , A)/Bn(X , A)

is the nth relative homology group of X relative to A.

Denote f : (X , A)→ (Y, B) a function f : X → Y such that A⊆ X , B⊆ Y , and f (A)⊆ B.

Lemma 10.23. Let X ,Y be topological spaces, A ⊆ X, B ⊆ Y , and f : (X , A)→ (Y, B) a continuous
function. The homomorphism f] : Cn(X)→Cn(Y ) induces the homomorphism on relative n-chains

ḟ] : Cn(X , A)→Cn(Y, B), σ +Cn(A) 7→ f](σ)+Cn(B).

Proof. If ∑
i∈I

niσi ∈ Cn(A), then f]
(
∑
i∈I

niσi

)
= ∑

i∈I
ni f ◦σi ∈ Cn(B). Hence f]

(
Cn(A)

)
⊆ Cn(B), and

ḟ] : Cn(X , A)→Cn(Y, B) is well-defined.

Lemma 10.24. Let X ,Y be topological spaces, A ⊆ X, B ⊆ Y , and f : (X , A)→ (Y, B) a continuous
function. The homomorphism f? : Hn(X)→ Hn(Y ) induces the homomorphism on relative homology
groups

ḟ? : Hn(X , A)→ Hn(Y, B), σ +Bn(X , A) 7→ f](σ)+Bn(Y, B).

Proof. We have:
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• If σ +Cn(A) ∈ Zn(X , A), then

∂

(
f]
(
σ +Cn(A)

))
= ∂

(
f](σ)+Cn(B)

)
= ∂

(
f](σ)

)
+∂
(
Cn(B)

)
= f]

(
∂ (σ)

)
+∂
(
Cn(B)

)
.

Since ∂ (σ) ∈Cn−1(A), then f]
(
∂ (σ)

)
+∂
(
Cn(B)

)
⊆Cn−1(B), so f]

(
Zn(X , A)

)
⊆ Zn(Y, B).

• If σ +Cn+1(A) ∈Cn+1(X , A), then

f]
(

∂
(
σ +Cn+1(A)

))
= ∂

(
f]
(
σ +Cn+1(A)

))
= ∂

(
f](σ)+Cn+1(B)

)
,

hence f]
(
Bn(X , A)

)
⊆ Bn(Y, B).

Like in Proposition 10.12, we deduce that f] induces a homomorphism f? : Hn(X , A)→Hn(Y, B).

Proposition 10.25. Let X ,Y be topological spaces, A ⊆ X, B ⊆ Y , and f : (X , A) → (Y, B), g :
(X , A)→ (Y, B) continuous functions. Suppose that there exists a homotopy F : X × [0, 1]→ Y be-
tween f and g such that

∀t ∈ [0, 1], F(A, t)⊆ B.

Then ḟ? : Hn(X , A)→ Hn(Y, B) = ġ? : Hn(X , A)→ Hn(Y, B).

Proof. If σ ∈ Cn(X) such that σ(∆n) ⊆ A, we get the composition F ◦ (σ × id) : ∆n× [0, 1]→ A×
[0, 1]→ B. The prism operator P of F then takes Cn(A) to Cn+1(B). Hence, it induces a relative prism
operator

Ṗ : Cn(X , A)→Cn+1(Y, B), σ +Cn(A) 7→ P(σ)+Cn+1(B).

Besides, for every σ +Cn(A)∈Cn(X , A), ∂̇ ◦ Ṗ
(
σ +Cn(A)

)
= ∂̇
(
P(σ)+Cn+1(B)

)
= ∂ ◦P(σ)+Cn(B)

and Ṗ◦ ∂̇
(
σ +Cn(A)

)
= Ṗ

(
∂ (σ)+Cn−1(A)

)
= P◦∂ (σ)+Cn(B). So, by Proposition 10.17,

∂̇ ◦ Ṗ
(
σ +Cn(A)

)
+ Ṗ◦ ∂̇

(
σ +Cn(A)

)
= ∂ ◦P(σ)+P◦∂ (σ)+Cn(B)

= g](σ)− f](σ)+Cn(B)

= ġ]
(
σ +Cn(A)

)
− ḟ]

(
σ +Cn(A)

)
.

If σ +Cn(A) ∈ Zn(X , A), since ∂̇
(
σ +Cn(A)

)
=Cn−1(A), then

ġ]
(
σ +Cn(A)

)
− ḟ]

(
σ +Cn(A)

)
= ∂̇ ◦ Ṗ

(
σ +Cn(A)

)
.

Thus ġ]
(
σ +Cn(A)

)
− ḟ]

(
σ +Cn(A)

)
∈ Bn(Y, B), meaning that g](σ)+Bn(Y, B) = f](σ)+Bn(Y, B).

So, for all σ +Bn(X , A) ∈ Hn(X , A),

ġ?
(
σ +Bn(X , A)

)
= g](σ)+Bn(Y, B) = f](σ)+Bn(Y, B) = ḟ?

(
σ +Bn(X , A)

)
.
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Value, 8
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Fundamental, 31

Homeomorphism, 10
Homomorphism

Induced, 32
Homotopic, 40

Path, 29
Homotopy, 40

Equivalent, 41
Inverse, 41
Path, 29

Interior, 5

Lifting, 34
Correspondence, 37

Limit, 7
Loop, 31

Metric, 23

Neighborhood, 4
Fundamental System, 5

Nulhomotopic, 40

Open, 3, 23
Ball, 23

Operator
Boundary, 44
Face, 44

Origin, 20

Path, 20

Retract, 40
Retraction, 40

Section, 33
Separated, 6
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Sequence
Cauchy, 26

Simplex, 43
Singular, 44
Standard, 44

Slice, 33
Space

Metric, 23
Complete, 26

Topological, 3
Subpace

Metric, 23
Subspace

Topological, 11
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Space

Product, 13
Quotient, 14

Topology, 3
Discrete, 3
Finite Complement, 3
Generated, 4
Induced, 11
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Quotient, 14
Trivial, 3
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