Topology

Hery Randriamaro ${ }^{1}$
Institut für Mathematik Universität Kassel
Heinrich-Plett-Straße 40
34132 Kassel

February 15, 2022

Contents

I General Topology 1
1 Topological Spaces 3
1.1 Topological Spaces 3
1.2 Neighborhoods 4
1.3 Interior 5
1.4 Closure 6
1.5 Separated Topological Spaces 6
2 Limit and Continuity 7
2.1 Limits 7
2.2 Adherence Values 8
2.3 Continuity 9
2.4 Homeomorphisms 10
3 Construction of Topological Spaces 11
3.1 Topological Subspaces 11
3.2 Products of Topological Spaces 13
3.3 Quotient Spaces 14
4 Compact Spaces 15
4.1 Compact Spaces 15
4.2 Properties of Compact Spaces 16
4.3 Locally Compact Spaces 18
5 Connected Spaces 19
5.1 Connected Spaces 19
5.2 Connected Components 20
5.3 Locally Connected Spaces 21
5.4 Path Connected Spaces 21
5.5 Locally Path-Connected Spaces 22
6 Metric Spaces 23
6.1 Metric Spaces 23
6.2 Continuity of the Metric 24
6.3 Sequences in Metric Spaces 25
6.4 Complete Metric Spaces 26
II Algebraic Topology 27
7 Fundamental Groups 29
7.1 Homotopy of Paths 29
7.2 Fundamental Groups 31
7.3 The Fundamental Group of \mathbb{S}^{n} 33
8 Covering Spaces 37
8.1 Covering Maps 37
8.2 Function Liftings 38
9 Homotopy 43
9.1 Homotopy of Functions 43
9.2 Homotopy Equivalence 44
10 Singular Homology 47
10.1 Singular Homology 47
10.2 Homotopy Invariance 50
10.3 Relative Homology Groups 54

Part I

General Topology

Chapter 1

Topological Spaces

1.1 Topological Spaces

Definition 1.1. One calls topological space a set X equipped with a family \mathscr{U} of subsets of X, called the open sets of X, satisfying the following conditions:
(i) the subsets \varnothing and X of X are open,
(ii) every union of open subsets of X is open,
(iii) every finite intersection of open subsets of X is open.

One says that \mathscr{U} defines a topology on X.
Example. Consider a set X. The collection of all subsets of X is a topology on X, and is called the discrete topology on X. The collection consisting of X and \varnothing is also a topology, and is called the trivial topology on X.
Example. Consider a set X. Let \mathscr{U}_{f} be the collection of all subsets A of X such that $X \backslash A$ is either finite or is X. Then, \mathscr{U}_{f} is a topology called the finite complement topology on X. Both X and \varnothing are in \mathscr{U}_{f}, since $X \backslash X=\varnothing$ is finite and $X \backslash \varnothing=X$. If $\left\{A_{i}\right\}_{i \in I}$ is a family of nonempty elements of \mathscr{U}_{f}, since $X \backslash \bigcup_{i \in I} A_{i}=\bigcap_{i \in I}\left(X \backslash A_{i}\right)$ is finite, then $\bigcup_{i \in I} A_{i} \in \mathscr{U}_{f}$. In case I is finite, $X \backslash \bigcap_{i \in I} A_{i}=\bigcup_{i \in I}\left(X \backslash A_{i}\right)$ is consequently finite, then $\bigcap_{i \in I} A_{i} \in \mathscr{U}_{f}$.

Definition 1.2. Let X be a topological space, and $A \subseteq X$. One says that A is closed if $X \backslash A$ is open.
Proposition 1.3. Let X be a topological space:
(i) the subsets \varnothing and X of X are closed,
(ii) every intersection of closed subsets of X is closed,
(iii) every finite union of closed subsets of X is closed.

Proof. The subsets \varnothing and X are evidently closed by passage to complements. Let \mathscr{C} a family of closed subsets of X. Since $X \backslash \bigcap_{B \in \mathscr{C}} B=\bigcup_{B \in \mathscr{C}}(X \backslash B)$ and $X \backslash B$ is open, then $X \backslash \bigcap_{B \in \mathscr{C}} B$ is open and $\bigcap_{B \in \mathscr{C}} B$
is consequently closed. If the family \mathscr{C} is finite, since $X \backslash \bigcup_{B \in \mathscr{C}} B=\bigcap_{B \in \mathscr{C}}(X \backslash B)$ and $\bigcap_{B \in \mathscr{C}}(X \backslash B)$ is open, then $\bigcup_{B \in \mathscr{C}} B$ is closed.

Definition 1.4. If X is a set, a basis for a topology on X is a collection \mathscr{B} of subsets of X such that
(i) for each $x \in X$, there exists an element $B \in \mathscr{B}$ containing x,
(ii) if x belongs to the intersection of two elements $B_{1}, B_{2} \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ such that $x \in B$ and $B \subseteq B_{1} \cap B_{2}$.

If \mathscr{B} satisfies both conditions, then one defines the topology generated by \mathscr{B} as follows: A subset U of X is said to be open in X if, for each $x \in U$, there exists $B \in \mathscr{B}$ such that $x \in B$ and $B \subseteq U$.

Proposition 1.5. Let X be a set, and \mathscr{B} a basis for a topology \mathscr{U} on X. Then, \mathscr{U} equals the collection formed by all unions of elements in \mathscr{B}.

Proof. As \mathscr{U} is a topology, any union of elements in \mathscr{B} clearly belongs to \mathscr{U}. Conversely, given $U \in \mathscr{U}$, for each $x \in U$, there exists $B_{x} \in \mathscr{B}$ such that $x \in B_{x}$ and $B_{x} \subseteq U$ as \mathscr{B} is a basis. So $\bigcup_{x \in U} B_{x} \subseteq U$, and we also have $U \subseteq \bigcup_{x \in U} B_{x}$ since $\bigcup_{x \in U} B_{x}$ contains every element of U.
Proposition 1.6. Let X be a set equipped with a topology \mathscr{U}. Suppose that \mathscr{C} is a collection of open sets such that, for each $U \in \mathscr{U}$ and each $x \in U$, there exists $C \in \mathscr{C}$ such that $x \in C$ and $C \subseteq U$. Then, \mathscr{C} is a basis for \mathscr{U}.

Proof. We first prove that \mathscr{C} is a basis. For the first condition, given $x \in X$, since $X \in \mathscr{U}$, then there exists $C \in \mathscr{C}$ such that $x \in C$ and $C \subseteq \mathscr{C}$. For the second condition, let $x \in C_{1} \cap C_{2}$ where $C_{1}, C_{2} \in \mathscr{C}$. Since C_{1} and C_{2} are open, so is $C_{1} \cap C_{2}$, then there exists $C \in \mathscr{C}$ such that $x \in C$ and $C \subseteq C_{1} \cap C_{2}$.
We now prove that the topology \mathscr{T} generated by \mathscr{C} is \mathscr{U}. If $U \in \mathscr{U}$ and $x \in U$, there exists $C \in \mathscr{C}$ such that $x \in C$ and $C \subseteq U$, and consequently $U \in \mathscr{T}$ by definition. Conversely, if $T \in \mathscr{T}$, then T equals a union of elements in \mathscr{C} from Proposition 1.5. As $\mathscr{C} \subseteq \mathscr{U}$ and \mathscr{U} is a topology, then $T \in \mathscr{U}$.

1.2 Neighborhoods

Definition 1.7. Let X be a topological space, and $x \in X$. A subset V of X is called a neighborhood of x in X if there exists an open subset A of X such that $x \in A$ and $A \subseteq V$.

Proposition 1.8. Let X be a topological space, and $x \in X$.
(i) If V and V^{\prime} are neighborhoods of x, then $V \cap V^{\prime}$ is a neighborhood of x.
(ii) If V is a neighborhood of x, and W a subset such that $V \subseteq W$, then W is a neighborhood of x.

Proof. There exists open subsets U, U^{\prime} containing x such that $U \subseteq V$ and $U^{\prime} \subseteq V^{\prime}$. So, $U \cap U^{\prime}$ is an open subset of X containing x with the property $U \cap U^{\prime} \subseteq V \cap V^{\prime}$. If $V \subseteq W$, then $U \subseteq W$, and W is obviously a neighborhood of x.

Proposition 1.9. Let X be a topological space, and $A \subseteq X$. These conditions are equivalent:
(i) A is open,
(ii) A is a neighborhood of each of its points.

Proof. $(i) \Rightarrow(i i)$: For a point x of A, we obviously have $x \in A \subseteq A$, so A is a neighborhood of x.
(ii) $\Rightarrow(i)$: For every $x \in A$, there exists an open subset A_{x} of X containing x such that that $A_{x} \subseteq A$. Then, the union $\bigcup_{x \in A} A_{x}$ is open, and is included in A. Since each point of A is contained in $\bigcup_{x \in A} A_{x}$, then $A \subseteq \bigcup_{x \in A} A_{x}$. Thus $A=\bigcup_{x \in A} A_{x}$, and A is consequently open.

Definition 1.10. Let X be a topological space, and $x \in X$. One calls fundamental system of neighborhoods of x any family $\left\{V_{i}\right\}_{i \in I}$ of neighborhoods of x such that every neighborhood of x contains one of the V_{i}.

Example. Let X be a topological space, and $x \in X$. The set of all open subsets of X containing x is a fundamental system of neighborhoods of x.

1.3 Interior

Definition 1.11. Let X be a topological space, $A \subseteq X$, and $x \in X$. The point x is interior to A if A is a neighborhood of x in X. The set of all points interior to A is called the interior of A and denoted A°.

Proposition 1.12. Let X be a topological space, and A a subset of X. Then A° is the largest open set of X contained in A.

Proof. Let U be an open subset of X contained in A. If $x \in U$, then A is neighborhood of x, therefore $x \in A^{\circ}$, and consequently $U \subseteq A^{\circ}$. So, every open subset contained in A is included in A°.
Now, if $x \in A^{\circ}$, there exists an open subset B such that $x \in B$ and $B \subseteq A$. Then $B \subseteq A^{\circ}$ by the first part of the proof, thus A° is a neighborhood of x. From Proposition 1.9 , we deduce that A° is open.

Proposition 1.13. Let X be a topological space, and $A \subseteq X$. These conditions are equivalent:
(i) A is open,
(ii) $A=A^{\circ}$.

Proof. $(i) \Rightarrow(i i)$: If A is open, then $A=A^{\circ}$ from Proposition 1.12 ,
$(i i) \Rightarrow(i):$ If $A=A^{\circ}$, then A is open since A° is open.

Proposition 1.14. Let X be a topological space, and $A, B \subseteq X$. Then $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$.
Proof. It is clear that $(A \cap B)^{\circ} \subseteq A^{\circ}$ and $(A \cap B)^{\circ} \subseteq B^{\circ}$, hence $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$.
One has $A^{\circ} \subseteq A$ and $B^{\circ} \subseteq B$, therefore $A^{\circ} \cap B^{\circ} \subseteq A \cap B$. Since $A^{\circ} \cap B^{\circ}$ is open, then $A^{\circ} \cap B^{\circ} \subseteq(A \cap B)^{\circ}$ from Proposition 1.12.

Definition 1.15. Let X be a topological space, and $A \subseteq X$. The boundary of A is the closed set $\partial A:=X \backslash\left(A^{\circ} \sqcup(X \backslash A)^{\circ}\right)$.

1.4 Closure

Definition 1.16. Let X be a topological space, $A \subseteq X$, and $x \in X$. One says that x is adherent to A if every neighborhood of x in X intersects A. The set of all points adherent to A is called the closure of A and denoted \bar{A}.

Proposition 1.17. Let X be a topological space, and $A \subseteq X$. Then $\bar{A}=X \backslash(X \backslash A)^{\circ}$.
Proof. Take a point $x \in X$. We have $x \notin \bar{A}$ if and only if x has a neighborhood disjoint from A if and only if $x \in(X \backslash A)^{\circ}$.

Proposition 1.18. Let X be a topological space, and $A, B \subseteq X$.
(i) \bar{A} is the smallest closed subset of X containing A.
(ii) A is closed if and only if $A=\bar{A}$.
(iii) $\overline{A \cup B}=\bar{A} \cup \bar{B}$.

Proof. (i) : The interior $(X \backslash A)^{\circ}$ is the largest open set contained in $X \backslash A$. Therefore its complement \bar{A} is closed and contains A. If B is a closed subset of X containing A, then $X \backslash B \subseteq(X \backslash A)^{\circ}=X \backslash \bar{A}$, and $\bar{A} \subseteq B$.
(ii) : As \bar{A} is the smallest closed subset of X containing A, then A is closed if and only if $A=\bar{A}$.
(iii) : From Proposition 1.17 , we have $\overline{A \cup B}=X \backslash(X \backslash(A \cup B))^{\circ}=X \backslash((X \backslash A) \cap(X \backslash B))^{\circ}$. Using Proposition 1.14, then $\overline{A \cup B}=X \backslash\left((X \backslash A)^{\circ} \cap(X \backslash B)^{\circ}\right)=\left(X \backslash(X \backslash A)^{\circ}\right) \cup\left(X \backslash(X \backslash B)^{\circ}\right)=\bar{A} \cup \bar{B}$.

Definition 1.19. Let X be a topological space, and $A \subseteq X$. One says A is dense if $\bar{A}=X$.
Proposition 1.20. Let X be a topological space, and $A \subseteq X$. These conditions are equivalent:
(i) A is dense,
(ii) $(X \backslash A)^{\circ}=\varnothing$,
(iii) every nonempty open subset of X intersects A.

Proof. $(i) \Rightarrow(i i)$: Since $X \backslash(X \backslash A)^{\circ}=\bar{A}=X$, then $(X \backslash A)^{\circ}=\varnothing$.
$(i i) \Rightarrow(i i i)$: Let U be an open subset that does not intersect A. Therefore $U \subseteq(X \backslash A)^{\circ}=\varnothing$.
(iii) $\Rightarrow(i)$: Since every neighborhood of every point of X intersects A, then $\bar{A}=X$.

1.5 Separated Topological Spaces

Definition 1.21. A topological space X is said to be separated if any two distinct points of X admit disjoint neighborhoods.

Proposition 1.22. Let X be a separated topological space, and $x \in X$. Then $\{x\}$ is closed.
Proof. Take a point $y \in X \backslash\{x\}$. There exist neighborhoods V and W of x and y respectively that are disjoint. In particular, $W \subseteq X \backslash\{x\}$, hence $X \backslash\{x\}$ is neighborhood of y. Thus $X \backslash\{x\}$ is a neighborhood of each of its points. We deduce from Proposition 1.9 that $X \backslash\{x\}$ is open.

Chapter 2

Limit and Continuity

2.1 Limits

Definition 2.1. A filter on a set X is a set \mathscr{F} formed by nonempty subsets of X satisfying the following conditions:
(i) if $A \in \mathscr{F}$ and $B \in \mathscr{F}$, then $A \cap B \in \mathscr{F}$,
(ii) if $A \in \mathscr{F}$ and if A^{\prime} is a subset of X containing A, then $A^{\prime} \in \mathscr{F}$.

Definition 2.2. A filter base on a set X is a set \mathscr{B} of nonempty subsets of X such that, if $A \in \mathscr{B}$ and $B \in \mathscr{B}$, there exists $C \in \mathscr{B}$ such that $C \subseteq A \cap B$.

Example. Let X be a topological space, and $x_{0} \in X$. The set \mathscr{V} formed by the neighborhoods of x_{0} is a filter on X. A fundamental system of neighborhoods of x_{0} is a filter base on X. Let $Y \subseteq X$, and assume $x_{0} \in \bar{Y}$. The set $\{Y \cap V \mid V \in \mathscr{V}\}$ is a filter on Y.
Example. For $x \in \mathbb{R}$, the set of intervals $\{(x-\varepsilon, x+\varepsilon)\}_{\varepsilon \in \mathbb{R}_{+}^{*}}$ is a filter base on \mathbb{R}.
Definition 2.3. Let X be a set equipped with a filter base \mathscr{B}, Y a topological space, $f: X \rightarrow Y$ a function, and l a point of Y. One says that f tends to l along \mathscr{B} if, for every neighborhood V of l in Y, there exists $B \in \mathscr{B}$ such that $f(B) \subseteq V$.
If X is a topological space, and \mathscr{B} the filter formed by the neighborhoods of a point x_{0} of X, one says that l is the limit of f along the neighborhood filter of x_{0}, and writes $\lim _{x \rightarrow x_{0}} f(x)=l$.

Proposition 2.4. Let X, Y be topological spaces, $f: X \rightarrow Y$ a function, $x_{0} \in X, l \in Y,\left\{V_{i}\right\}_{i \in I} a$ fundamental system of neighborhoods of x_{0} in X, and $\left\{W_{j}\right\}_{j \in J}$ a fundamental system of neighborhoods of l in Y. The following conditions are equivalent:
(i) $\lim _{x \rightarrow x_{0}} f(x)=l$,
(ii) for every $j \in J$, there exists $i \in I$ such that $f\left(V_{i}\right) \subseteq W_{j}$.

Proof. $(i) \Rightarrow(i i)$: For every $j \in J$, there exists a neighborhood V of x_{0} such that $f(V) \subseteq W_{j}$. By definition, there exists $i \in I$ such that $V_{i} \subseteq V$. Therefore $f\left(V_{i}\right) \subseteq W_{j}$.
$(i i) \Rightarrow(i):$ Let W be a neighborhood of l. There exists $j \in J$ such that $W_{i} \subseteq W$. Then, there exists $i \in I$ such that $f\left(V_{i}\right) \subseteq W_{j}$, and consequently $f\left(V_{i}\right) \subseteq W$.

Proposition 2.5. Let X be a set equipped with a filter base \mathscr{B}, Y a separated topological space, and $f: X \rightarrow Y$ a function. If f admits a limit along \mathscr{B}, this limit is unique.
Proof. Let l, l^{\prime} be distinct limits of f along \mathscr{B}. Since Y is separated, there exist disjoint neighborhoods V and V^{\prime} of l and l^{\prime} respectively in Y. There exist $B, B^{\prime} \in \mathscr{B}$ such that $f(B) \subseteq V$ and $f\left(B^{\prime}\right) \subseteq V^{\prime}$. By definition, there exists $B^{\prime \prime} \in \mathscr{B}$ such that $B^{\prime \prime} \subseteq B \cap B^{\prime}$. Then $f\left(B^{\prime \prime}\right) \subseteq f(B) \cap f\left(B^{\prime}\right) \subseteq V \cap V^{\prime}$. Since $B^{\prime \prime}$ is nonempty, then $f\left(B^{\prime \prime}\right) \neq \varnothing$, and consequently $V \cap V^{\prime} \neq \varnothing$ which is absurd.

Proposition 2.6. Let X be a set equipped with a filter base \mathscr{B}, Y a topological space, $f: X \rightarrow Y$ a function, and $l \in Y$. Let $X^{\prime} \in \mathscr{B}$, and f^{\prime} the restriction of f to X^{\prime}. The sets $B \cap X^{\prime}$, where $B \in \mathscr{B}$, form a filter base \mathscr{B}^{\prime} on X^{\prime}. The following conditions are equivalent:
(i) f tends to lalong \mathscr{B},
(ii) f^{\prime} tends to lalong \mathscr{B}^{\prime}.

Proof. (i) $\Rightarrow(i i)$: Let V be a neighborhood of l. There exists $B \in \mathscr{B}$ such that $f(B) \subseteq V$. Hence $f^{\prime}\left(B \cap X^{\prime}\right) \subseteq V$. As $B \cap X^{\prime} \mathscr{B}^{\prime}$, then f^{\prime} tends to l along \mathscr{B}^{\prime}.
$(i i) \Rightarrow(i)$: Let V be a neighborhood of l. There exists $B^{\prime} \in \mathscr{B}^{\prime}$ such that $f\left(B^{\prime}\right) \subseteq V$. But B^{\prime} has the form $B \cap X^{\prime}$ with $B \in \mathscr{B}$. Since $X^{\prime} \in \mathscr{B}$, there exists $B^{\prime \prime} \in \mathscr{B}$ such that $B^{\prime \prime} \subseteq B \cap X^{\prime}$. Then, $f\left(B^{\prime \prime}\right) \subseteq f^{\prime}\left(B^{\prime}\right) \subseteq V$, and f consequently tends to l along \mathscr{B}.

2.2 Adherence Values

Definition 2.7. Let X be a set equipped with a filter base \mathscr{B}, Y a topological space, $f: X \rightarrow Y$ a function, and l a point of Y. One says that l is an adherence value of f along \mathscr{B} if, for every neighborhood V of l and for every $B \in \mathscr{B}, f(B)$ intersects V.
Example. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto\{x\}$. Then, every real number in $[0,1)$ is an adherence value of f along the filter base $\{(a,+\infty)\}_{a \in \mathbb{R}_{+}}$.
Proposition 2.8. Let X be a set equipped with a filter base \mathscr{B}, Y a separated topological space, $f: X \rightarrow Y$ a function, and l a point of Y. If f tends to l along \mathscr{B}, then l is the unique adherence value of f along \mathscr{B}.

Proof. Let V be a neighborhood of l, and $B \in \mathscr{B}$. There exists $B^{\prime} \in \mathscr{B}$ such that $f\left(B^{\prime}\right) \subseteq V$. Then $B \cap B^{\prime} \neq \varnothing$, hence $f\left(B \cap B^{\prime}\right) \neq \varnothing$, and $f\left(B \cap B^{\prime}\right) \subseteq f(B) \cap V$. Therefore $f(B)$ intersects V, meaning that l is an adherence value of f along \mathscr{B}.
Let l^{\prime} be an adherence value of f along \mathscr{B}, assume $l^{\prime} \neq l$. There exist neighborhoods V and V^{\prime} of l and l^{\prime} respectively that are disjoint. There exists $B \in \mathscr{B}$ such that $f(B) \subseteq V$. Then $f(B) \cap V^{\prime}$ contradicting the fact that l^{\prime} is an adherence value.

Proposition 2.9. Let X be a set equipped with a filter base \mathscr{B}, Y a topological space, and $f: X \rightarrow Y$ a function. The set formed by the adherence values of f along \mathscr{B} is $\bigcap_{B \in \mathscr{B}} \overline{f(B)}$.
Proof. Let l be an adherence value of f along \mathscr{B}, and $B \in \mathscr{B}$. Every neighborhood of l intersects $f(B)$. Then $l \in \overline{f(B)}$, and $l \in \bigcap_{B \in \mathscr{B}} \overline{f(B)}$.
Let $l^{\prime} \in \bigcap_{B \in \mathscr{B}} \overline{f(B)}, V^{\prime}$ be a neighborhood of l^{\prime}, and take $B \in \mathscr{B}$. Since $l^{\prime} \in \overline{f(B)}$, then $f(B)$ intersects V^{\prime}, and l^{\prime} is an adherence value of f.

2.3 Continuity

Definition 2.10. Let X, Y be topological spaces, $f: X \rightarrow Y$ a function, and $x_{0} \in X$. One says that f is continuous at x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$. In other words, for every neighborhood V of $f\left(x_{0}\right)$, there exists a neighborhood U of x_{0} such that $f(U) \subseteq V$.

Proposition 2.11. Let X, Y, Z be topological spaces, $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ functions, and $x_{0} \in X$. If f is continuous at x_{0}, and g at $f\left(x_{0}\right)$, then $g \circ f$ is continuous at x_{0}.

Proof. Let W be a neighborhood of $g\left(f\left(x_{0}\right)\right)$ in Z. There exists a neighborhood V of $f\left(x_{0}\right)$ in Y such that $g(V) \subseteq W$. Moreover, there exists a neighborhood U of x_{0} in X such that $f(U) \subseteq V$. Then, U is neighborhood of U such that $g \circ f(U) \subseteq g(V) \subseteq W$.

Definition 2.12. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a function. One says that f is continuous on X if f is continuous at every point of X. The set of continuous functions from X into Y is denoted $\mathscr{C}(X, Y)$.

Example. Let $A, B \subseteq \mathbb{R}^{n}$, and f a rational function such that f is defined on A and $f(A)=B$. Consider the basis $\mathscr{B}_{A}=\left\{A \cap \mathbb{B}(x, r) \mid x \in A, r \in \mathbb{R}_{+}^{*}\right\}$ resp. $\mathscr{B}_{B}=\left\{B \cap \mathbb{B}(x, r) \mid x \in B, r \in \mathbb{R}_{+}^{*}\right\}$ for a topology on A resp. B, where $\mathbb{B}(x, r)$ is the open n-ball $\left\{y \in \mathbb{R}^{n} \mid\|x-y\|_{2}<r\right\}$. Take $x_{0} \in A$, and a neighborhood V of $f\left(x_{0}\right)$. There exists an open ball $\mathbb{B}\left(x_{0}, r\right)$ such that $A \cap \mathbb{B}\left(x_{0}, r\right) \subseteq f^{-1}(V)$. So $f\left(A \cap \mathbb{B}\left(x_{0}, r\right)\right) \subseteq V$, and $f: A \rightarrow B$ is consequently continuous.

Proposition 2.13. Let X, Y, Z be topological spaces, $f \in \mathscr{C}(X, Y)$, and $g \in \mathscr{C}(Y, Z)$. Then, we have $g \circ f \in \mathscr{C}(X, Z)$.

Proof. Use Proposition 2.11 for the continuity of $g \circ f$ on every point of X.
Proposition 2.14. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a function. The following conditions are equivalent:
(i) f is continuous,
(ii) $f^{-1}(B)$ is an open subset of X if B is an open subset of Y,
(iii) $f^{-1}(B)$ is a closed subset of X if B is a closed subset of Y,
(iv) for every subset A of $X, f(\bar{A}) \subseteq \overline{f(A)}$.

Proof. $(i) \Rightarrow(i v):$ Let $A \subseteq X$ and $x_{0} \in \bar{A}$. Take a neighborhood W of $f\left(x_{0}\right)$ in Y. Since f is continuous at x_{0}, there exists a neighborhood V of x_{0} in X such that $f(V) \subseteq W$. The fact $x_{0} \in \bar{A}$ implies $V \cap A \neq \varnothing$. As $f(V \cap A) \subseteq W \cap f(A)$, one sees that $W \cap f(A) \neq \varnothing$. Therefore $f\left(x_{0}\right) \in \overline{f(A)}$, and $f(\bar{A}) \subseteq \overline{f(A)}$.
$(i v) \Rightarrow(i i i)$: Let B be a closed subset of Y, and $A \in f^{-1}(B)$. Then $f(A) \subseteq B$, and $\overline{f(A)} \subseteq B$ from Proposition 1.18 (i). If $x \in \bar{A}$, then $f(x) \in \overline{f(A)}$ as f is continuous. Therefore $f(x) \in B$ and so $x \in A$. Thus $A=\bar{A}$.
$($ iii $) \Rightarrow(i i)$: Let B be an open subset of Y. Then $Y \backslash B$ is closed, and consequently $f^{-1}(Y \backslash B)$ is closed. But $f^{-1}(Y \backslash B)=X \backslash f^{-1}(B)$, then $f^{-1}(B)$ is open.
$(i i) \Rightarrow(i)$: Let $x_{0} \in X$, and W a neighborhood of $f\left(x_{0}\right)$ in Y. There exists an open subset B of Y such that $f\left(x_{0}\right) \in B \subseteq W$. If $A=f^{-1}(B)$, then A is open, and A is a neighborhood of x_{0} as $x_{0} \in A$. Since $f(A) \subseteq B \subseteq W$, then f is continuous at x_{0}.

2.4 Homeomorphisms

Proposition 2.15. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a bijective function. The following conditions are equivalent:
(i) f and f^{-1} are a continuous,
(ii) a subset A of X is open if and only if $f(A)$ is open in Y,
(iii) a subset A of X is closed if and only if $f(A)$ is closed in Y.

Proof. $(i) \Rightarrow(i i)$: Using Proposition 2.14, we deduce from the continuity of f that if $f(A)$ is open then A is open, and from the continuity of f^{-1} that if A is open then $f(A)$ is open. One analogously proves $(i) \Rightarrow(i i i)$.
$(i i) \Rightarrow(i)$: Using Proposition 2.14, "if $f(A)$ is open then A is open" implies that f is continuous, and "if A is open then $f(A)$ is open" implies that f^{-1} is continuous. One analogously gets $(i i i) \Rightarrow(i)$.

Definition 2.16. Let X, Y be topological spaces, and f a function from X into Y. One says that f is a homeomorphism if f is bijective, continuous, and f^{-1} is continuous. In that case, one says that X and Y are homeomorphic.

Example. The n-dimensional sphere is the set $\mathbb{S}^{n}:=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\}$. Let $a=(0, \ldots, 0,1) \in \mathbb{S}^{n}$, and identify \mathbb{R}^{n} with $\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{n+1}=0\right\}$. We are going to define a homeomorphism from $\mathbb{S}^{n} \backslash\{a\}$ onto \mathbb{R}^{n}. Take a point $x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{S}^{n} \backslash\{a\}$. The line joining a and x is $D=\left\{\left(\lambda x_{1}, \ldots, \lambda x_{n}, 1+\lambda\left(x_{n+1}-1\right)\right) \in \mathbb{R}^{n+1} \mid \lambda \in \mathbb{R}\right\}$. This line touches \mathbb{R}^{n} when $1+\lambda\left(x_{n+1}-1\right)=0$, that is when $\lambda=\frac{1}{1-x_{n+1}}$. Thus $D \cap \mathbb{R}^{n}$ reduces to the point $f(x)$ with coordinates

$$
\begin{equation*}
x_{1}^{\prime}=\frac{x_{1}}{1-x_{n+1}}, \quad x_{2}^{\prime}=\frac{x_{2}}{1-x_{n+1}}, \ldots, \quad x_{n}^{\prime}=\frac{x_{n}}{1-x_{n+1}}, \quad x_{n+1}^{\prime}=0 \tag{2.1}
\end{equation*}
$$

We have thus defined a function $f: \mathbb{S}^{n} \backslash\{a\} \rightarrow \mathbb{R}^{n}$. We now prove that, given $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, 0\right)$, there exists one and only one point $x=\left(x_{1}, \ldots, x_{n+1}\right)$ in $\mathbb{S}^{n} \backslash\{a\}$ such that $f(x)=x^{\prime}$. The solution of Equation 2.1 yields the conditions

$$
x_{i}=x_{i}^{\prime}\left(1-x_{n+1}\right) \text { for } 1 \leq i \leq n, \quad \text { and } \quad \sum_{i=1}^{n} x_{i}^{\prime 2}\left(1-x_{n+1}\right)^{2}+x_{n+1}^{2}=1
$$

After dividing out $1-x_{n+1}$, we obtain $\left(x_{1}^{\prime 2}+\cdots+x_{n}^{\prime 2}\right)\left(1-x_{n+1}\right)-1-x_{n+1}=0$, which gives

$$
\begin{equation*}
x_{n+1}=\frac{x_{1}^{\prime 2}+\cdots+x_{n}^{\prime 2}-1}{x_{1}^{\prime 2}+\cdots+x_{n}^{\prime 2}+1} \quad \text { and } \quad x_{1}=\frac{2 x_{1}^{\prime}}{x_{1}^{\prime 2}+\cdots+x_{n}^{\prime 2}+1}, \ldots, x_{n}=\frac{2 x_{n}^{\prime}}{x_{1}^{\prime 2}+\cdots+x_{n}^{\prime 2}+1} \tag{2.2}
\end{equation*}
$$

Thus $f: \mathbb{S}^{n} \backslash\{a\} \rightarrow \mathbb{R}^{n}$ is a bijection. Let $\mathscr{B}_{\mathbb{S}^{n} \backslash\{a\}}=\left\{\mathbb{S}^{n} \backslash\{a\} \cap \mathbb{B}(x, r) \mid x \in \mathbb{S}^{n} \backslash\{a\}, r \in \mathbb{R}_{+}^{*}\right\}$ resp. $\mathscr{B}_{\mathbb{R}^{n}}=\left\{\mathbb{R}^{n} \cap \mathbb{B}(x, r) \mid x \in \mathbb{R}^{n}, r \in \mathbb{R}_{+}^{*}\right\}$ be a basis for a topology on $\mathbb{S}^{n} \backslash\{a\}$ resp. \mathbb{R}^{n}, where $\mathbb{B}(x, r)$ is the open $n+1$-ball $\left\{y \in \mathbb{R}^{n+1} \mid\|x-y\|_{2}<r\right\}$. We see in Equation 2.1 resp. Equation 2.2 that f resp. f^{-1} is a rational function, and is consequently continuous. Hence f is a homeomorphism called stereographic projection of $\mathbb{S}^{n} \backslash\{a\}$ onto \mathbb{R}^{n}.

Chapter 3

Construction of Topological Spaces

3.1 Topological Subspaces

Proposition 3.1. Let X be a topological space, \mathscr{U} a topology on X, and Y a subset of X. Then $\mathscr{V}=\{U \cap Y \mid U \in \mathscr{U}\}$ is a topology on Y.

Proof. (i) : As $\varnothing, X \in \mathscr{U}$, then $\varnothing=\varnothing \cap Y \in \mathscr{V}$ and $Y=X \cap Y \in \mathscr{V}$.
(ii) : Let $\left\{V_{i}\right\}_{i \in I}$ be a family of subsets belonging to \mathscr{V}. For every $i \in I$, there exists $U_{i} \in \mathscr{U}$ such that $V_{i}=U_{i} \cap Y$. Therefore $\bigcup_{i \in I} V_{i}=\bigcup_{i \in I}\left(U_{i} \cap Y\right)=\left(\bigcup_{i \in I} U_{i}\right) \cap Y \in \mathscr{V}$.
(iii) : If I is finite, then $\bigcap_{i \in I} V_{i}=\bigcap_{i \in I}\left(U_{i} \cap Y\right)=\left(\bigcap_{i \in I} U_{i}\right) \cap Y \in \mathscr{V}$.

Definition 3.2. Let X be a topological space, \mathscr{U} a topology on X, and Y a subset of X. The set $\mathscr{V}=\{U \cap Y \mid U \in \mathscr{U}\}$ is called the topology induced on Y by the given topology of X. Equipped with this topology, Y is called a topological subspace of X.

Example. Consider \mathbb{R} with the usual topology. As $\{n\}=\mathbb{Z} \cap\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$, every point set $\{n\}$ of \mathbb{Z} is therefore open. Every subset of \mathbb{Z} is the union of point sets, then is open. Thus the topological subspace \mathbb{Z} of \mathbb{R} is discrete.

Proposition 3.3. Let X be a topological space, Y a subspace of X, and A a subset of Y. The following conditions are equivalent:
(i) A is closed in Y,
(ii) A is the intersection with Y of a closed subset of X.

Proof. $(i) \Rightarrow(i i)$: The subset $Y \backslash A$ is open in Y. Therefore there exists an open subset U of X such that $Y \backslash A=U \cap Y$. Thus $A=(X \backslash U) \cap Y$, and since $X \backslash U$ is closed, we get the result.
$(i i) \Rightarrow(i)$: Suppose $A=V \cap Y$ where V is closed subset of X. Then $Y \backslash A=(X \backslash V) \cap Y$. Since $X \backslash V$ is open in X, then $Y \backslash A$ is open in Y, and A is closed in Y.

Proposition 3.4. Let X be a topological space, Y a subspace of X, and $x \in Y$. For a subset A of Y, the following conditions are equivalent:
(i) A is a neighborhood of x in Y,
(ii) A is the intersection with Y of a neighborhood of x in X.

Proof. $(i) \Rightarrow(i i)$: There exists an open subset B of Y such that $x \in B \subseteq A$. Then there exists an open subset U of X such that $B=U \cap Y$. Letting $V=U \cup A$, we have $x \in V$, thus V is a neighborhood of x in X. Besides, $Y \cap V=(Y \cap U) \cup(Y \cap A)=B \cup A=A$.
(ii) $\Rightarrow(i)$: Suppose $A=Y \cap V$ where V is a neighborhood of x in X. There exists an open subset U of X such that $x \in U \subseteq V$. Then $x \in Y \cap U \subseteq Y \subseteq V=A$, and since $Y \cap U$ is open in Y, thus A is neighborhood of x in Y.

Proposition 3.5. Let X be a topological space, and $Y \subseteq X$. If X is separated, then Y is separated.
Proof. Take two distinct points x, y of Y. There exist disjoint neighborhoods U and V of x and y respectively in X. We deduce from Proposition 3.4 that $U \cap Y$ and $V \cap Y$ are neighborhoods of x and y respectively in Y, and they are disjoint.

Proposition 3.6. Let X, Y, Z be topological spaces such that $X \supseteq Y \supseteq Z$. Assume \mathscr{U} is a topology on X, \mathscr{V} the topology induced by \mathscr{U} on Y, and \mathscr{W} the topology induced by \mathscr{V} on Z. Then \mathscr{W} is the topology induced by \mathscr{U} on Z.

Proof. Let \mathscr{W}^{\prime} be the topology induced by \mathscr{U} on Z.
For $W \in \mathscr{W}$, there exist $V \in \mathscr{V}$ such that $W=V \cap Z$, and $U \in \mathscr{U}$ such that $V=U \cap Y$. Then $W=U \cap Z$, and consequently $W \in \mathscr{W}^{\prime}$.
For $W^{\prime} \in \mathscr{W}^{\prime}$, there exists $U \in \mathscr{U}$ such that $W^{\prime}=U \cap Z$. If $V=U \cap Y$, then $V \in \mathscr{V}$ and $W^{\prime}=V \cap Z$. Therefore $W^{\prime} \in \mathscr{W}$.

Proposition 3.7. Let X be a set equipped with a filter base \mathscr{B}, Y a topological space, Y^{\prime} a subspace of $Y, f: X \rightarrow Y^{\prime}$ a function, and l a point of Y^{\prime}. The following conditions are equivalent:
(i) f tends to lalong \mathscr{B} relative to Y^{\prime},
(ii) f tends to l along \mathscr{B} relative to Y.

Proof. $(i) \Rightarrow(i i)$: Let V be a neighborhood of l in Y. We know from Proposition 3.4 that $V \cap Y^{\prime}$ is a neighborhood of l in Y^{\prime}. There exists $B \in \mathscr{B}$ such that $f(B) \subseteq V \cap Y^{\prime}$. Thus $f(B) \subseteq V$, and f consequently tends to l along \mathscr{B} relative to Y.
$(i i) \Rightarrow(i)$: Let V^{\prime} be a neighborhood of l^{\prime} in Y^{\prime}. From Proposition 3.4, there exists a neighborhood V of l in Y such that $V \cap Y^{\prime}=V^{\prime}$. Besides, there exists $B \in \mathscr{B}$ such that $f(B) \subseteq V$. Since $f(X) \subseteq Y^{\prime}$, one has $f(B) \subseteq V \cap Y^{\prime}$ which is V^{\prime}. Thus f tends to l along \mathscr{B} relative to Y.

Corollary 3.8. Let X, Y be topological spaces, Y^{\prime} a subspace of Y, and $f: X \rightarrow Y^{\prime}$ a function. The following conditions are equivalent:
(i) f is continuous,
(ii) f, regarded as a function from X into Y, is continuous.

Proof. For every $x_{0} \in X$, the condition $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$ has the same meaning, according to Proposition 3.7 for the neighborhood filter of x_{0}, whether one considers f to have values in Y^{\prime} or in Y.

3.2 Products of Topological Spaces

Proposition 3.9. Let X_{1}, \ldots, X_{n} be topological spaces equipped with topologies $\mathscr{U}_{1}, \ldots, \mathscr{U}_{n}$ respectively. The set \mathscr{U} formed by any union of elements in $\mathscr{U}_{1} \times \cdots \times \mathscr{U}_{n}$ is a topology on $X=X_{1} \times \cdots \times X_{n}$.

Proof. (i): We have $X=X_{1} \times \cdots \times X_{n} \in \mathscr{U}_{1} \times \cdots \times \mathscr{U}_{n}$ and $\varnothing=\varnothing \times X_{2} \times \cdots \times X_{n} \in \mathscr{U}_{1} \times \cdots \times \mathscr{U}_{n}$.
(ii) : From its definition, any union of elements in \mathscr{U} is a union of elements in $\mathscr{U}_{1} \times \cdots \times \mathscr{U}_{n}$.
(iii): Take $A, B \in \mathscr{U}$. We have $A=\bigcup_{\alpha \in I} A_{\alpha}$ and $B=\bigcup_{\beta \in J} B_{\beta}$ with $A_{\alpha}, B_{\beta} \in \mathscr{U}_{1} \times \cdots \times \mathscr{U}_{n}$. Then $A \cap B=\bigcup_{\substack{\alpha \in I \\ \beta \in J}} A_{\alpha} \cap B_{\beta}$. Setting $A_{\alpha}=A_{1} \times \cdots \times A_{n}$ and $B_{\beta}=B_{1} \times \cdots \times B_{n}$, we get

$$
A_{\alpha} \cap B_{\beta}=\left(A_{1} \cap B_{1}\right) \times \cdots \times\left(A_{n} \cap B_{n}\right) \in \mathscr{U}_{1} \times \cdots \times \mathscr{U}_{n}
$$

Definition 3.10. Let X_{1}, \ldots, X_{n} be topological spaces equipped with topologies $\mathscr{U}_{1}, \ldots, \mathscr{U}_{n}$ respectively. The topology \mathscr{U} on $X=X_{1} \times \cdots \times X_{n}$ formed by any union of elements in $\mathscr{U}_{1} \times \cdots \times \mathscr{U}_{n}$ is called the product topology of the given topologies on X_{1}, \ldots, X_{n}. Equipped with this topology, X is called the product topological space of the topological spaces X_{1}, \ldots, X_{n}.

Proposition 3.11. Let $X=X_{1} \times \cdots \times X_{n}$ be a product of topological spaces, and $x=\left(x_{1}, \ldots, x_{n}\right) \in X$. The sets of the form $V_{1} \times \cdots \times V_{n}$, where V_{i} is a neighborhood of x_{i} in X_{i}, constitute a fundamental system of neighborhoods of x in X.

Proof. For $i \in\{1, \ldots, n\}$, let V_{i} be a neighborhood of x_{i} in X_{i}. There exists an open subset A_{i} of X_{i} such that $x_{i} \in A_{i} \subseteq V_{i}$. Then $x \in A_{1} \times \cdots \times A_{n} \subseteq V_{1} \times \cdots \times V_{n}$. As $A_{1} \times \cdots \times A_{n}$ is open in X, thus $V_{1} \times \cdots \times V_{n}$ is a neighborhood of x in X.
Let V be a neighborhood of x in X. There exists an open subset A of X such that $x \in A \subseteq V$. By definition of the product topology, there exists an open subset A_{i} such that $x_{i} \in A_{i}$ and $A_{1} \times \cdots \times A_{n} \subseteq A$. Thus A_{i} is a neighborhood of x_{i} and $A_{1} \times \cdots \times A_{n} \subseteq V$.

Proposition 3.12. Let $X=X_{1} \times \cdots \times X_{n}$ be a product of topological spaces. If each X_{i} is separated, then X is separated.

Proof. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two distinct points of X. One has $x_{i} \neq y_{i}$ for at least one $i \in\{1, \ldots, n\}$. If $x_{1} \neq y_{1}$ for example, there exist disjoint neighborhoods U and V of x_{1} and y_{1} respectively in X_{1}. Then $U \times X_{2} \times \cdots \times X_{n}$ and $V \times X_{2} \times \cdots \times X_{n}$ are disjoint neighborhoods of x and y respectively in X.

Proposition 3.13. Let X be a set equipped with a filter base $\mathscr{B}, Y=Y_{1} \times \cdots \times Y_{n}$ a product of topological spaces, and $l=\left(l_{1}, \ldots, l_{n}\right) \in Y$. Consider a function $f: X \rightarrow Y$, that is, having the form $x \mapsto\left(f_{1}(x), \ldots, f_{n}(x)\right)$, where $f_{i}: X \rightarrow Y_{i}$ is also a function for $i \in\{1, \ldots, n\}$. Then, the following conditions are equivalent:
(i) f tends to l along \mathscr{B},
(ii) f_{i} tends to l_{i} along \mathscr{B}.

Proof. $(i) \Rightarrow(i i)$: Let us show, for example, that f_{1} tends to l_{1} along \mathscr{B}. If V_{1} is a neighborhood of l_{1}, then $V_{1} \times Y_{2} \times \cdots \times Y_{n}$ is a neighborhood of l in Y. Therefore, there exists $B \in \mathscr{B}$ such that $f(B) \subseteq V_{1} \times Y_{2} \times \cdots \times Y_{n}$. Thus $f_{1}(B) \subseteq V$, and f_{1} consequently tends to l_{1} along \mathscr{B}.
$($ ii $) \Rightarrow(i)$: Let V be a neighborhood of l in Y. We know from Proposition 3.11 that there exist neighborhoods V_{1}, \ldots, V_{n} of l_{1}, \ldots, l_{n} respectively in Y_{1}, \ldots, Y_{n} such that $V_{1} \times \cdots \times V_{n} \subseteq V$. Then, there exist $B_{1}, \ldots, B_{n} \in \mathscr{B}$ such that $f_{1}\left(B_{1}\right) \subseteq V_{1}, \ldots, f_{n}\left(B_{n}\right) \subseteq V_{n}$. Moreover, there exists $B \in \mathscr{B}$ such that $B \subseteq B_{1} \cap \cdots \cap B_{n}$. Then, $f(B) \subseteq f_{1}\left(B_{1}\right) \times \cdots \times f_{n}\left(B_{n}\right) \subseteq V_{1} \times \cdots \times V_{n} \subseteq V$, and f consequently tends to l along \mathscr{B}.

Proposition 3.14. Let X be a topological space, and $Y=Y_{1} \times \cdots \times Y_{n}$ a product of topological spaces. Consider a function $f: X \rightarrow Y$, that is, having the form $x \mapsto\left(f_{1}(x), \ldots, f_{n}(x)\right)$, where $f_{i}: X \rightarrow Y_{i}$ is also a function for $i \in\{1, \ldots, n\}$. The following conditions are equivalent:
(i) f is continuous,
(ii) f_{1}, \ldots, f_{n} are continuous.

Proof. For every $x_{0} \in X$, the conditions $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$ and $\lim _{x \rightarrow x_{0}} f_{i}(x)=f_{i}\left(x_{0}\right)$, for $i \in\{1, \ldots, n\}$, are equivalent by Proposition 3.13 using the neighborhood filter of x_{0}.

3.3 Quotient Spaces

Proposition 3.15. Let X be a topological space with topology \mathscr{U}, \mathscr{R} an equivalence relation on X, and c the canonical mapping from X onto X / \mathscr{R}. Then the set defined by $\mathscr{V}:=\left\{A \subseteq X / \mathscr{R} \mid c^{-1}(A) \in \mathscr{U}\right\}$ a topology on X / \mathscr{R}.
Proof. The set \varnothing and X / \mathscr{R} are open in X / \mathscr{R} since $c^{-1}(\varnothing)=\varnothing$ and $c^{-1}(X / \mathscr{R})=X$. The two other conditions follow, for a set $\left\{A_{i}\right\}_{i \in I}$ included in \mathscr{V}, from the equations

$$
c^{-1}\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} c^{-1}\left(A_{i}\right) \quad \text { and } \quad c^{-1}\left(\bigcap_{i=1}^{n} A_{i}\right)=\bigcap_{i=1}^{n} c^{-1}\left(A_{i}\right) .
$$

Definition 3.16. Let X be a topological space with topology \mathscr{U}, \mathscr{R} an equivalence relation on X, and c the canonical mapping from X onto X / \mathscr{R}. The topology $\left\{A \subseteq X / \mathscr{R} \mid c^{-1}(A) \in \mathscr{U}\right\}$ on X / \mathscr{R} is called the quotient topology of the topology of X by \mathscr{R}. Equipped with this topology, X / \mathscr{R} is called the quotient space of X by \mathscr{R}.
Proposition 3.17. Let X be a topological space, \mathscr{R} an equivalence relation on X, c the canonical mapping from X onto $X / \mathscr{R}, Y$ a topological space, and $f: X / \mathscr{R} \rightarrow Y$ a function. The following conditions are equivalent:
(i) f is continuous on X / \mathscr{R},
(ii) the function $f \circ c: X \rightarrow Y$ is continuous.

Proof. $(i) \Rightarrow(i i)$: The mapping c is continuous as, if A is open in X / \mathscr{R}, then $c^{-1}(A)$ is open in X. Since f is also continuous, then $f \circ c$ is continuous.
$(i i) \Rightarrow(i):$ Let B be an open subset of Y. Then $c^{-1}\left(f^{-1}(B)\right)=(f \circ c)^{-1}(B)$ is open in X. Therefore $f^{-1}(B)$ is open in X / \mathscr{R} by the definition of c. Thus f is continuous from Proposition 2.14.

Chapter 4

Compact Spaces

4.1 Compact Spaces

Definition 4.1. Let X be a set, and A a subset of X. A family \mathscr{F} of subsets included in X is a covering of A if $A \subseteq \bigcup_{U \in \mathscr{F}} U$.
Definition 4.2. A topological space X is compact if, for any family \mathscr{O} of open subsets of X covering X, one can extract from \mathscr{O} a finite subfamily that again covers X. By passage to complements, this definition is equivalent, for any family \mathscr{C} of closed subsets of X having empty intersection, to the existence of a finite subfamily of \mathscr{C} having empty intersection.

Proposition 4.3. Let X be a topological space, and A a subspace of X. The following conditions are equivalent:
(i) A is compact,
(ii) if a family of open subsets of X covers A, one can extract from it a finite subfamily that again covers A.

Proof. (i) $\Rightarrow(i i)$: Let $\left\{U_{i}\right\}_{i \in I}$ be a family of open subsets of X such that $A \subseteq \bigcup_{i \in I} U_{i}$. Every $U_{i} \cap A$ is open in A, and the family $\left\{U_{i} \cap A\right\}_{i \in I}$ covers A, so there exists a finite subset J of I such that $A=\bigcup_{j \in J}\left(U_{j} \cap A\right)$. The subfamily $\left\{U_{j}\right\}_{j \in J}$ consequently covers A.
(ii) $\Rightarrow(i):$ Let $\left\{V_{i}\right\}_{i \in I}$ be a family of open sets of A covering A. For every $i \in I$, there exists an open subset U_{i} of X such that $V_{i}=U_{i} \cap A$. Then $\left\{U_{i}\right\}_{i \in I}$ covers A, there consequently exists a finite subset J of I such that $\left\{U_{j}\right\}_{j \in J}$ covers A. Therefore $\bigcup_{j \in J} V_{j}=A$.

Theorem 4.4 (Borel-Lebesgue). Consider the space \mathbb{R} equipped with the usual topology, and let $a, b \in \mathbb{R}$ with $a \leq b$. Then the interval $[a, b]$ is compact.

Proof. Let $\left\{U_{i}\right\}_{i \in I}$ be a family of open subsets of \mathbb{R} covering $[a, b]$, and A be the set of $x \in[a, b]$ such that $[a, x]$ is covered by a finite subfamily of $\left\{U_{i}\right\}_{i \in I}$. The set A is nonempty since $a \in A$. It is contained in $[a, b]$, and therefore has a supremum m in $[a, b]$. There exists $j \in I$ such that $m \in U_{j}$. Since U_{j} is open in \mathbb{R}, there exists $\varepsilon>0$ such that $[m-\varepsilon, m+\varepsilon] \subseteq U_{j}$. As m is the supremum of A, there exists $x \in A$ such that $m-\varepsilon \leq x \leq m$. Then $[a, x]$ is covered by a finite subfamily $\left\{U_{k}\right\}_{k \in K}$, and
with $[x, m+\varepsilon] \subseteq U_{j}$, we get $[a, m+\varepsilon]$ covered by the finite subfamily $\left\{U_{k}\right\}_{k \in K} \cup\left\{U_{j}\right\}$. One sees that $m+\varepsilon \in[a, b]$ contradicts the fact that m is the supremum in $[a, b]$. Hence $m=b$, and $[a, b]$ is covered by a finite subfamily of $\left\{U_{i}\right\}_{i \in I}$. We deduce the compactness of $[a, b]$ from Proposition 4.3.

4.2 Properties of Compact Spaces

Proposition 4.5. Let X be a set equipped with a filter base \mathscr{B}, Y a compact space, and $f: X \rightarrow Y$ a function. Then f admits at least one adherence value along \mathscr{B}.

Proof. Consider the family $\{\overline{f(B)}\}_{B \in \mathscr{B}}$ of closed subsets of Y, and let $A=\bigcap_{B \in \mathscr{A}} \overline{f(B)}$. If $A=\varnothing$, there exist $B_{1}, \ldots, B_{n} \in \mathscr{B}$ such that $\overline{f\left(B_{1}\right)} \cap \cdots \cap \overline{f\left(B_{n}\right)}=\varnothing$ as Y is compact. Now, there exists $B \in \mathscr{B}$ such that $B \subseteq B_{1} \cap \cdots \cap B_{n}$, whence $f(B) \subseteq f\left(B_{1}\right) \cap \cdots \cap f\left(B_{n}\right)$, and consequently $f\left(B_{1}\right) \cap \cdots \cap f\left(B_{n}\right) \neq \varnothing$. This contradiction proves that $A \neq \varnothing$, so we get the result by using Proposition 2.9.

Proposition 4.6. Let X be a set equipped with a filter base \mathscr{B}, Y a compact space, $f: X \rightarrow Y$ a function, and A the set of adherence values of f along \mathscr{B}. Take an open subset U of Y containing A. Then, there exists $B \in \mathscr{B}$ such that $f(B) \subseteq U$.

Proof. One has $(Y \backslash U) \cap A=\varnothing$, meaning that $(Y \backslash U) \cap \bigcap_{B \in \mathscr{B}} \overline{f(B)}=\varnothing$. Since Y is compact, there exist $B_{1}, \ldots, B_{n} \in \mathscr{B}$ such that $(Y \backslash U) \cap \overline{f\left(B_{1}\right)} \cap \cdots \cap \overline{f\left(B_{n}\right)}=\varnothing$. Furthermore, there exist $B \in \mathscr{B}$ such that $B \subseteq B_{1} \cap \cdots \cap B_{n}$. Then $(Y \backslash U) \cap \overline{f(B)}=\varnothing$, implying $\overline{f(B)} \subseteq U$.

Corollary 4.7. Let X be a set equipped with a filter base \mathscr{B}, Y a compact space, and $f: X \rightarrow Y$ a function. If f admits only one adherence value l along \mathscr{B}, then f tends tol along \mathscr{B}.

Proof. From Proposition 4.6, for any neighborhood V of l, there exists $B \in \mathscr{B}$ such that $f(B) \subseteq V$.
Proposition 4.8. Let X be a compact space, and A a closed subspace of X. Then A is compact.
Proof. Let $\left\{A_{i}\right\}_{i \in I}$ be a family of closed subsets of A with empty intersection. We know from Proposition 3.3 that each A_{i} is the intersection of A with a closed subset of X then is closed in X. Since X is compact, there exists a finite subfamily $\left\{A_{j}\right\}_{j \in J}$ with empty intersection.

Proposition 4.9. Let X be a separated space, and A a compact subspace of X. Then A is closed in X.
Proof. Take $x \in X \backslash A$. For every $y \in A$, there exist open neighborhoods U_{y}, V_{y} of x, y respectively in X that are disjoint. We have $A \subseteq \bigcup_{y \in A} V_{y}$, and since A is compact, there exist $y_{1}, \ldots, y_{n} \in A$ such that $A \subseteq V_{y_{1}} \cup \cdots \cup V_{y_{n}}$. The set $U_{y_{1}} \cap \cdots \cap U_{y_{n}}$ is an open neighborhood of x contained in $X \backslash A$. It follows that $X \backslash A$ is neighborhood of each of its points, and is consequently open from Proposition 1.9. Therefore A is closed in X.

Proposition 4.10. Let X be a separated space.
(i) If A, B are compact subsets of X, then $A \cup B$ is compact.
(ii) If $\left\{A_{i}\right\}_{i \in I}$ is a nonempty family of compact subsets of X, then $\bigcap_{i \in I} A_{i}$ is compact.

Proof. (i) : Let $\left\{U_{i}\right\}_{i \in I}$ be a covering of $A \cup B$ by open subsets of X. There exist finite subsets J_{1}, J_{2} of I such that $\left\{U_{j}\right\}_{j \in J_{1}}$ covers A and $\left\{U_{j}\right\}_{j \in J_{2}}$ covers B. Then $\left\{U_{j}\right\}_{j \in J_{1} \cup J_{2}}$ covers $A \cup B$, and we deduce from Proposition 4.3 that $A \cup B$ is compact.
(ii) : We know from Proposition 4.9 that each A_{i} is closed in X. Therefore $\bigcap_{i \in I} A_{i}$ is closed in X, and consequently in each A_{i}. Since each A_{i} is compact, then $\bigcap_{i \in I} A_{i}$ is compact by Proposition 4.8 ,
Proposition 4.11. Let X be a separated compact space. Every point of X has a fundamental system of compact neighborhoods.

Proof. Take a point x_{0} and an open neighborhood A of x_{0} in X. The sets $\left\{x_{0}\right\}$ and $X \backslash A$ are disjoint compact subsets of X. For every $x \in X \backslash A$, there exist disjoint open subsets U_{x}, V_{x} of X such that $x_{0} \in U_{x}$ and $x \in V_{x}$. Since $X \backslash A \subseteq \bigcup_{x \in X \backslash A} V_{x}$, there exists $x_{1}, \ldots, x_{n} \in X \backslash A$ such that $X \backslash A \subseteq V_{x_{1}} \cup \cdots \cup V_{x_{n}}$. Then, $U=U_{x_{1}} \cap \cdots \cap U_{x_{n}}$ and $V=V_{x_{1}} \cup \cdots \cup V_{x_{n}}$ are disjoint open subsets of X such that $x_{0} \in U$ and $X \backslash A \subseteq V$. Hence \bar{U} is a compact neighborhood of x_{0}. We have $U \subseteq X \backslash V$, therefore $\bar{U} \subseteq X \backslash V$ as $X \backslash V$ is closed, and consequently $\bar{U} \subseteq A$.

Proposition 4.12. Let X be a compact space, Y a topological space, and $f: X \rightarrow Y$ a continuous function. Then $f(X)$ is compact.

Proof. Let $\left\{U_{i}\right\}_{i \in I}$ be a family of open subsets of Y covering $f(X)$. Since f is continuous, then each $f^{-1}\left(U_{i}\right)$ is an open subset of X from Proposition 2.14. Moreover, $X=\bigcup_{i \in I} f^{-1}\left(U_{i}\right)$, then there exists a finite subset J of I such that $X=\bigcup_{j \in J} f^{-1}\left(U_{j}\right)$. Hence $\left\{U_{j}\right\}_{j \in J}$ covers $f(X)$, and $f(X)$ is therefore compact.

Corollary 4.13. Let X be a compact space, Y a separated space, and $f: X \rightarrow Y$ a continuous bijective function. Then f is a homeomorphism of X onto Y.

Proof. If A is a closed subset of X, then A is compact from Proposition 4.8, therefore $f(A)$ is compact from Proposition 4.12, and consequently closed from Proposition 4.9. We deduce from Proposition 2.14 that f^{-1} is continuous.

Theorem 4.14. The product of a finite number of compact spaces is compact.
Proof. It suffices to show that if X and Y are compact, then $X \times Y$ is compact. Let $\left\{U_{i}\right\}_{i \in I}$ be a covering of $X \times Y$ with open subsets. For every $m=(x, y) \in X \times Y$, fix an open set U_{m} such that $m \in U_{m}$. By Proposition 3.11, there exist an open neighborhood V_{m} of x in X and an open neighborhood W_{m} of y in Y such that $V_{m} \times W_{m} \subseteq U_{m}$.
For a fixed $x_{0} \in X,\left\{x_{0}\right\} \times Y$ is homeomorphic to Y. Indeed, the function $y \mapsto\left(x_{0}, y\right)$ of Y onto $\left\{x_{0}\right\} \times Y$ is bijective. It is continuous from Y into $X \times Y$ by Proposition 3.14, therefore from Y into $\left\{x_{0}\right\} \times Y$ by Corollary 3.8. Its inverse function is the composite of the canonical injection of $\left\{x_{0}\right\} \times Y$ into $X \times Y$, which is continuous from Corollary 3.8 once again, and of the canonical projection of $X \times Y$ onto Y, which is also continuous from Proposition 3.14. The set $\left\{x_{0}\right\} \times Y$ is then compact.
The family of open subsets $\left\{V_{m} \times W_{m}\right\}_{m \in\left\{x_{0}\right\} \times Y}$ is a covering of $\left\{x_{0}\right\} \times Y$, so there consequently exist finite points $m_{1}, \ldots, m_{n} \in\left\{x_{0}\right\} \times Y$ such that $\left\{x_{0}\right\} \times Y \subseteq\left(V_{m_{1}} \times W_{m_{1}}\right) \cup \cdots \cup\left(V_{m_{n}} \times W_{m_{n}}\right)$. The intersection $A_{x_{0}}=V_{m_{1}} \cap \cdots \cap V_{m_{n}}$ is an open neighborhood of x_{0}. For every $(x, y) \in A_{x_{0}} \times Y$, there exists
$k \in\{1, \ldots, n\}$ such that $(x, y) \in V_{m_{k}} \times W_{m_{k}}$, hence $A_{x_{0}} \times Y$ is covered by a finite subset of $\left\{U_{i}\right\}_{i \in I}$. Now $\left\{A_{x_{0}}\right\}_{x_{0} \in X}$ forms a covering of X, from which one can extract a finite covering of open subsets $\left\{A_{x_{1}}, \ldots, A_{x_{p}}\right\}$. Each $A_{x_{j}} \times Y$, with $j \in\{1, \ldots, p\}$, is covered by a finite subset of $\left\{U_{i}\right\}_{i \in I}$, therefore $X \times Y$ is covered by a finite subset of $\left\{U_{i}\right\}_{i \in I}$.

4.3 Locally Compact Spaces

Definition 4.15. A topological space X is said to be locally compact if every point of X admits a compact neighborhood.

Example. Consider the product topological space \mathbb{R}^{n}, where \mathbb{R} is equipped with the usual topology, and take $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. We know from the theorem of Borel-Lebesgue that, for every $i \in$ $\{1, \ldots, n\},\left[x_{i}-1, x_{i}+1\right]$ is a compact neighborhood of x_{i} in \mathbb{R}. Then, by Proposition 3.11 and Theorem 4.14, $\left[x_{1}-1, x_{1}+1\right] \times \cdots \times\left[x_{n}-1, x_{n}+1\right]$ is a compact neighborhood of x. The topological space \mathbb{R}^{n} is therefore locally compact.

Proposition 4.16. Let X be a separated space. The following conditions are equivalent:
(i) X is locally compact,
(ii) every point of X admits a fundamental system of compact neighborhoods.

Proof. We obviously have $(i i) \Rightarrow(i)$. We only prove $(i) \Rightarrow(i i)$: Let $x \in X$ and V be a compact neighborhood of x. We know from Proposition 4.11 that x admits in V a fundamental system $\left\{V_{i}\right\}_{i \in I}$ of compact neighborhoods. We deduce from Proposition 3.4 that $\left\{V_{i}\right\}_{i \in I}$ is a fundamental system of compact neighborhoods of x in X.

Proposition 4.17. Let X be a locally compact space, and Y a subspace of X.
(i) If Y is closed, then Y is locally compact.
(ii) If X is separated and Y is open, then Y is locally compact.

Proof. Let $x \in Y$ and V a compact neighborhood of x in X. Then $V \cap Y$ is a neighborhood of x in Y. (i) : We know from Proposition 3.3 that $V \cap Y$ is closed in V, hence is compact by Proposition 4.8.
(ii) : As Y is a neighborhood of x, we can suppose from Proposition 4.16 that $V \subseteq Y$, and then V is a compact neighborhood of x in Y.

Proposition 4.18. Let X_{1}, \ldots, X_{n} be locally compact spaces, and $X=X_{1} \times \cdots \times X_{n}$. Then X is locally compact.

Proof. Take $x=\left(x_{1}, \ldots, x_{n}\right) \in X$. For every $i \in\{1, \ldots, n\}$, there exists a compact neighborhood V_{i} of x_{i} in X_{i}. Then $V_{1} \times \cdots \times V_{n}$ is a neighborhood of x in X is compact by Theorem4.14.

Chapter 5

Connected Spaces

5.1 Connected Spaces

Definition 5.1. A topological space X is said to be connected if there does not exist a pair (A, B) of disjoint nonempty open subsets of X such that $X=A \sqcup B$. By passage to complements, this definition is equivalent to the nonexistence of a pair (A, B) of disjoint nonempty closed subsets of X such that $X=A \sqcup B$. It is also equivalent to the nonexistence of a subset of X, distinct from X and \varnothing, that is both open and closed.

Proposition 5.2. The topological space \mathbb{R} equipped with the usual topology is connected.
Proof. Let A be an open and closed subset of \mathbb{R}, and assume A and $\mathbb{R} \backslash A$ nonempty. Taking $x \in \mathbb{R} \backslash A$, one of the sets $A \cap[x,+\infty)$ and $A \cap(-\infty, x]$ is nonempty. Suppose that $B=A \cap[x,+\infty) \neq \varnothing$. Then B is closed. Since it is bounded below, then it has a smallest element as its infimum b is adherent to B. Besides, since $B=A \cap(x,+\infty)$, then B is also open. Hence B contains an interval $(b-\varepsilon, b+\varepsilon)$ with $\varepsilon>0$. That contradicts the fact that b is the smallest element of B.

Definition 5.3. Let X be a topological space and $Y \subseteq X$. One says that Y is a connected subset of X if the topological space Y is connected.

Example. The subspace \mathbb{Q} of \mathbb{R} is not connected. Take indeed an element $x \in \mathbb{R} \backslash \mathbb{Q}$ such as $\sqrt{2}$ or π. Then $\mathbb{Q}=((-\infty, x) \cap \mathbb{Q}) \sqcup((x,+\infty) \cap \mathbb{Q})$ which are two disjoint open subsets of \mathbb{Q}.

Proposition 5.4. Let X be a topological space, $\left\{A_{i}\right\}_{i \in I}$ a family of connected subsets of X, and A the set $\bigcup_{i \in I} A_{i}$. If the A_{i} intersect pairwise, then A is connected.

Proof. Suppose A is not connected. There exist nonempty subsets $U, V \subseteq A$ open in A such that $V=A \backslash U$. For every $i \in I, U \cap A_{i}$ and $V \cap A_{i}$ are both open and complementary in A_{i}. Since A_{i} is connected, then $U \cap A_{i}=\varnothing$ or $V \cap A_{i}=\varnothing$. Let I_{U} and I_{V} be the set of $i \in I$ such that $A_{i} \subseteq U$ and $A_{i} \subseteq V$ respectively. Then, $U=\bigcup_{i \in I_{U}} A_{i}$ and $V=\bigcup_{i \in I_{V}} A_{i}$. Therefore, there exist $i, j \in I, i \neq j$, such that A_{i} and A_{j} are disjoint, which is a contradiction.

Corollary 5.5. Let X be a topological space, and A_{1}, \ldots, A_{n} connected subspaces of X such that $A_{i} \cap A_{i+1} \neq \varnothing$ if $i \in\{1, \ldots, n\}$. Then, $A_{1} \cup \cdots \cup A_{n}$ is connected.

Proof. The proof is by induction. We suppose that $A_{1} \cup \cdots \cup A_{n-1}$ is connected. As $A_{n-1} \cap A_{n} \neq \varnothing$, we deduce from Proposition 5.4 that $A_{1} \cup \cdots \cup A_{n}$ is connected.

Proposition 5.6. Let X be a topological space, A a connected subset of X, and B a subset of X such that $A \subseteq B \subseteq \bar{A}$. Then B is connected.

Proof. Suppose that B is the union of subsets U, V that are disjoint and open in B. There exist open sets U^{\prime}, V^{\prime} in X such that $U=B \cap U^{\prime}$ and $V=B \cap V^{\prime}$. The sets $A \cap U$ and $A \cap V$ are then open and complementary in A. Since A is connected, we have for example $A \cap U=\varnothing$, then $A \cap U^{\prime}=\varnothing$, in other words $A \subseteq X \backslash U^{\prime}$. Since $X \backslash U^{\prime}$ is closed, then $\bar{A} \subseteq X \backslash U^{\prime}$. So $B \cap U^{\prime}=\varnothing$, implying $U=\varnothing$.

Proposition 5.7. Let X, Y be topological spaces and f a continuous function from X into Y. If X is connected, then $f(X)$ is connected.

Proof. If $f(X)$ is not connected, it has nonempty open subsets $U, V \subseteq f(X)$ that are complementary. So $f^{-1}(U), f^{-1}(V) \subseteq X$ are nonempty open subsets that are complementary, which is absurd.

Proposition 5.8. Consider \mathbb{R} equipped with the usual topology, and $A \subseteq R$. The following conditions are equivalent:
(i) A is connected,
(ii) A is an interval.

Proof. We can assume that A is nonempty and not reduced to a point.
$(i i) \Rightarrow(i)$: If A is open, then A is homeomorphic to \mathbb{R}, and consequently connected by Proposition 5.2 , If A is an arbitrary interval, then $A^{\circ} \subseteq A \subseteq \bar{A}$, and consequently connected by Proposition 5.6.
$(i) \Rightarrow(i i)$: Suppose that A is not an interval. There exist $a, b \in A$ and $x_{0} \in \mathbb{R} \backslash A$ such that $a<x_{0}<b$. Then A is the union of the sets $A \cap\left(-\infty, x_{0}\right)$ and $A \cap\left(x_{0},+\infty\right)$ which are open in A. Since A is connected, $A \cap\left(x_{0},+\infty\right)$ for example is empty. Then $x<x_{0}$ for all $x \in A$, which contradicts $b \in A$.

Proposition 5.9. Let X be a connected topological space, $f: X \rightarrow \mathbb{R}$ a continuous function, and $a, b \in X$. Then f takes on every value between $f(a)$ and $f(b)$.

Proof. The set $f(X)$ is a connected subset of \mathbb{R} by Proposition 5.7, hence is an interval of \mathbb{R} by Proposition5.8. This interval contains $f(a)$ and $f(b)$, hence all numbers between them.

5.2 Connected Components

Proposition 5.10. Let X be a topological space, and $x \in X$. Among the connected subspaces of X containing x, there exists one that is larger than all the others.

Proof. The union of all the connected subsets of X containing x is connected by Proposition 5.4, and is obviously the largest of the connected subsets of X containing x.

Definition 5.11. Let X be a topological space and $x \in X$. The largest connected subset of X containing x is called the connected component of x in X.

Example. The topological spaces $X=\mathbb{R} \backslash\{0\}$ and $Y=\mathbb{R} \backslash\{0,1\}$ are not homeomorphic, since X has the two connected components $(-\infty, 0),(0,+\infty)$, while Y the has three $(-\infty, 0),(0,1),(1,+\infty)$.

Proposition 5.12. Let X be a topological space.
(i) Every connected component of X is closed in X.
(ii) Two distinct connected components are disjoint.

Proof. (i) : If A_{x} is the connected component of x, then $\overline{A_{x}}$ is connected by Proposition5.6. But A_{x} is the largest connected subset of X containing x, hence $\overline{A_{x}}=A_{x}$.
(ii) : Let A_{x}, A_{y} be connected components that are not disjoint. Then $A_{x} \cup A_{y}$ is connected by Proposition5.4. Since $x \in A_{x} \cup A_{y}$, then $A_{x} \cup A_{y} \subseteq A_{x}$, hence $A_{y} \subseteq A_{x}$. Similarly $A_{x} \subseteq A_{y}$, therefore $A_{x}=A_{y}$.

Proposition 5.13. Let X be a topological space. If every point of X has a connected neighborhood, the connected components of X are open.

Proof. Let C be a connected component of $X, x \in C$, and V a connected neighborhood of x. Since $x \in C \cap V$, the union $C \cup V$ is then connected, and $C \cup V \subseteq C$. Hence $V \subseteq C$, and C is a neighborhood of x. We deduce from Proposition 1.9 that C is open.

5.3 Locally Connected Spaces

Definition 5.14. A topological space X is said to be locally connected at its point x if x has a fundamental system of connected neighborhoods. If X is locally connected at each of its points, it is said to be locally connected.

Example. The topological space $\mathbb{R} \backslash\{0\}$ is not connected, but it is locally connected.
Proposition 5.15. Let X be a topological space. The following conditions are equivalent:
(i) X is locally connected,
(ii) for every open set V of X, each connected component of V is open in X.

Proof. $(i) \Rightarrow(i i)$: Let C be a connected component of an open set V in X, and $x \in C$. We can choose a connected neighborhood U of x such that $U \subseteq V$. Since U is connected, it must lie entirely in C. We deduce from Proposition 1.9 that C is open.
(ii) $\Rightarrow(i)$: Given $x \in X$, a neighborhood V of x in X, and open set U such that $x \in U$ and $U \subseteq V$. Let C be the connected component of U containing x. Since C is connected and open in X, then it is a connected neighborhood of x contained in V.

5.4 Path Connected Spaces

Definition 5.16. Let X be a topological space and $a, b \in X$. A continuous map f from $[0,1]$ into X such that $f(0)=a$ and $f(1)=b$ is called a path in X with origin a and extremity b. If any two points of X are the origin and extremity of a path in X, X is said to be path connected.

Example. The open unit n-ball $\mathbb{B}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+\cdots+x_{n}^{2}<1\right\}$ is path connected. Indeed, any points $x, y \in \mathbb{B}^{n}$ can be connected by the straight-line path $f:[0,1] \rightarrow \mathbb{B}^{n}$ defined by

$$
f(t)=(1-t) x+t y
$$

Proposition 5.17. Let X be an path connected topological space. Then X is connected.

Proof. Take a point $x_{0} \in X$. For every $x \in X$, let $f_{x}:[0,1] \rightarrow X$ be a path with origin x_{0} and extremity x. Since $[0,1]$ is connected by Proposition 5.8, then $f_{x}([0,1])$ is connected by Proposition 5.7. Therefore $X=\bigcup_{x \in X} f_{x}([0,1])$ is connected by Proposition 5.4, as x_{0} belongs to all of the $f_{x}([0,1])$.

Proposition 5.18. Let X be a topological space, and $A, B \subseteq X$. If A, B are path connected such that $A \cap B \neq \varnothing$, then $A \cup B$ is path connected.

Proof. Let $x \in A, y \in B$, and pick $z \in A \cap B$. Choose paths $f:[0,1] \rightarrow A, g:[0,1] \rightarrow B$ such that $f(0)=x, f(1)=z$, and $g(0)=z, g(1)=y$. We obtain a path $h:[0,1] \rightarrow A \cup B$ from x to y as follows:

$$
h(t)= \begin{cases}f(2 t) & \text { if } t \in\left[0, \frac{1}{2}\right] \\ g(2 t-1) & \text { if } t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Proposition 5.19. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a continuous function. If X is path connected, then $f(X)$ is path connected.

Proof. If $y_{1}, y_{2} \in f(X)$, there exist $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. As X is path connected, there exists a path $h:[0,1] \rightarrow X$ from x_{1} to x_{2}. Hence $f \circ h:[0,1] \rightarrow Y$ is a path from y_{1} to y_{2}.

5.5 Locally Path-Connected Spaces

Definition 5.20. A topological space X is said to be locally path connected at its point x if x has a fundamental system of path-connected neighborhoods. If X is locally path connected at each of its points, it is said to be locally path connected.

Definition 5.21. Let X be a topological space and $x \in X$. The path component of x in X is the set formed by the points $y \in X$ such that a path with origin x and extremity y in X exists.

Proposition 5.22. Let X be a topological space. The following conditions are equivalent:
(i) X is locally path connected,
(ii) for every open set V of X, each path component of V is open in X.

Proof. $(i) \Rightarrow(i i)$: Let C be a path component of an open set V in X, and $x \in C$. We can choose a path-connected neighborhood U of x such that $U \subseteq V$. Since U is path connected, it must lie entirely in C. We deduce from Proposition 1.9 that C is open.
(ii) $\Rightarrow(i)$: Given $x \in X$, a neighborhood V of x in X, and open set U such that $x \in U$ and $U \subseteq V$. Let C be the path component of U containing x. Since C is path connected and open in X, then it is a path-connected neighborhood of x contained in V.

Chapter 6

Metric Spaces

6.1 Metric Spaces

Definition 6.1. A metric on a set X is a function $d: X \times X \rightarrow \mathbb{R}_{+}$satisfying the following conditions:
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$,
(iii) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

A set equipped with a metric is called a metric space.
Example. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, y=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, and set $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}$. It is known that d is a metric on \mathbb{R}^{n}, and in this way \mathbb{R}^{n} becomes a metric space.

Definition 6.2. Let X be a set equipped with a metric d, and $Y \subseteq X$. Then Y becomes a metric space with the restriction of d to $Y \times Y$, and is called a metric subspace of X.

Definition 6.3. Let X be a metric space with metric d, take $a \in X$, and $\rho \in \mathbb{R}_{+}^{*}$. The set $B(a, \rho):=$ $\{x \in X \mid d(a, x)<\rho\}$ is called an open ball with center a and radius ρ. A subset $A \subseteq X$ is said to be open if, for each $x_{0} \in A$, there exists $\varepsilon \in \mathbb{R}_{+}^{*}$ such that $B\left(x_{0}, \varepsilon\right) \subseteq A$.

Definition 6.4. Let X be a metric space, and $A \subseteq X$. One says that A is closed if $X \backslash A$ is open.
Proposition 6.5. Every metric space X is a topological space, and the topology of X is formed by the open sets of X.

Proof. Let X be a metric space. The subsets \varnothing and X of X are clearly open.
Take a family $\left\{A_{i}\right\}_{i \in I}$ of open subsets of X. Let $A=\bigcup_{i \in I} A_{i}$, and $x_{0} \in A$. There exists $i \in I$ such that $x_{0} \in A_{i}$. Hence, there exists $\varepsilon \in \mathbb{R}_{+}^{*}$ such that $B\left(x_{0}, \varepsilon\right) \subseteq A_{i} \subseteq A$. Thus A is open.
Suppose now that I is finite. Let $C=\bigcap_{i \in I} A_{i}$, and $x_{0} \in C$. For every $i \in I$, there exists $\varepsilon_{i} \in \mathbb{R}_{+}^{*}$ such that $B\left(x_{0}, \varepsilon_{i}\right) \subseteq A_{i}$. If $\varepsilon \in \inf \left\{\varepsilon_{i}\right\}_{i \in I}$, then $B\left(x_{0}, \varepsilon\right) \subseteq A_{i}$ for every $i \in I$. Hence $B\left(x_{0}, \varepsilon\right) \subseteq C$, and C is consequently open.

Proposition 6.6. Let X be a set, and d, d^{\prime} metrics on X. Suppose there exist $c, c^{\prime} \in \mathbb{R}_{+}^{*}$ such that

$$
c d(x, y) \leq d^{\prime}(x, y) \leq c^{\prime} d(x, y)
$$

for all $x, y \in X$. The open subsets of X are the same for d and d^{\prime}.
Proof. Let A be a subset of X that is open for d, and $x_{0} \in A$. There exists $\varepsilon \in \mathbb{R}_{+}^{*}$ such that $\{x \in$ $\left.X \mid d\left(x_{0}, x\right)<\varepsilon\right\} \subseteq A$. If $x \in X$ satisfies $d^{\prime}\left(x_{0}, x\right)<c \varepsilon$, then $d\left(x_{0}, x\right)<\varepsilon$, so $x \in A$. Hence A is also open for d^{\prime}. On the other side, one proves that if A is open for d^{\prime}, then A is open for d by interchanging the roles of d and d^{\prime}.

6.2 Continuity of the Metric

Proposition 6.7. Let X be a metric space. Its metric $d: X \times X \rightarrow \mathbb{R}_{+}$is continuous.
Proof. Let $\left(x_{0}, y_{0}\right) \in X \times X$, and take $\varepsilon \in \mathbb{R}_{+}^{*}$. The set $B\left(x_{0}, \frac{\varepsilon}{2}\right) \times B\left(y_{0}, \frac{\varepsilon}{2}\right)$ is a neighborhood of $\left(x_{0}, y_{0}\right)$ in $X \times X$. If $(x, y) \in B\left(x_{0}, \frac{\varepsilon}{2}\right) \times B\left(y_{0}, \frac{\varepsilon}{2}\right)$, then

$$
\begin{gathered}
d(x, y) \leq d\left(x, x_{0}\right)+d\left(x_{0}, y_{0}\right)+d\left(y_{0}, y\right)<\frac{\varepsilon}{2}+d\left(x_{0}, y_{0}\right)+\frac{\varepsilon}{2}=d\left(x_{0}, y_{0}\right)+\varepsilon \\
d\left(x_{0}, y_{0}\right) \leq d\left(x_{0}, x\right)+d(x, y)+d\left(y, y_{0}\right)<\frac{\varepsilon}{2}+d(x, y)+\frac{\varepsilon}{2}=d(x, y)+\varepsilon
\end{gathered}
$$

therefore $\left|d(x, y)-d\left(x_{0}, y_{0}\right)\right|<\varepsilon$. So d is continuous at $\left(x_{0}, y_{0}\right)$.
Definition 6.8. Let X be a metric space, and A a nonempty subset of X. One calls diameter of A the number $\operatorname{diam}(A):=\sup \{d(x, y) \mid x, y \in A\}$.

Lemma 6.9. Consider \mathbb{R} with the usual topology, and let A be a nonempty subset of \mathbb{R}. Suppose that A is bounded above, and x its supremum. Then x is the largest element of \bar{A}.

Proof. Let V be a neighborhood of x in \mathbb{R}, and $\varepsilon \in \mathbb{R}_{+}^{*}$ such that $(x-\varepsilon, x+\varepsilon) \subseteq V$. By definition of the supremum, there exists $y \in A$ such that $x-\varepsilon<y \leq x$. Then $y \in V$, meaning that $V \cap A \neq \varnothing$, thus x is adherent to A.
Let $x^{\prime} \in \bar{A}$ such that $x^{\prime}>x$, and set $\varepsilon=x^{\prime}-x>0$. Then $\left(x^{\prime}-\varepsilon, x^{\prime}+\varepsilon\right)$ is a neighborhood of x^{\prime}, therefore intersects A. Let $y \in\left(x^{\prime}-\varepsilon, x^{\prime}+\varepsilon\right) \cap A$. Since $y>x^{\prime}-\varepsilon=x, x$ is then not an upper bound for A, which is absurd. So, x is the largest element of \bar{A}.

Proposition 6.10. Let X be a metric space, and $A \subseteq X$. The sets A and \bar{A} have the same diameter.
Proof. Denote d the metric of X. Let $D=\{d(x, y) \mid x, y \in A\}$ and $D^{\prime}=\{d(x, y) \mid x, y \in \bar{A}\}$. We obviously have $D \subseteq D^{\prime}$. One deduce from Proposition 3.11 that every point of $\bar{A} \times \bar{A}$ is adherent to $A \times A$. So $D^{\prime}=d(\bar{A} \times \bar{A}) \subseteq d(\overline{A \times A})$, and $d(\overline{A \times A}) \subseteq d(A \times A)=\bar{D}$ by Proposition 2.14 and Proposition 6.7. Then $D^{\prime} \subseteq \bar{D}$, and consequently $\bar{D}=\bar{D}^{\prime}$. If D is bounded, we then deduce from Lemma 6.9 that the diameter of A and \bar{A} is the largest element of \bar{D}. If D is unbounded, then D and D^{\prime} have the same supremum $+\infty$.

Definition 6.11. Let X be a metric space with metric d, and A, B two nonempty subsets of X. The distance from A to B the number $d(A, B):=\inf \{d(x, y) \mid x \in A, y \in B\}$. It is clear that $d(A, B)$ and $d(B, A)$ are equal. If $z \in X$, we define $d(z, A):=\inf \{d(z, x) \mid x \in A\}$.

6.3 Sequences in Metric Spaces

Proposition 6.12. Let X be a metric space, $x \in X$, and $A \subseteq X$. The following conditions are equivalent:
(i) $x \in \bar{A}$,
(ii) there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of points in A that tends to x.

Proof. (ii) $\Rightarrow(i)$: Since every neighborhood of x intersects $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, then every neighborhood of x intersects A which means that $x \in \bar{A}$.
$(i) \Rightarrow(i i)$: For every $n \in \mathbb{N}$, there exists a point $x_{n} \in A \cap B\left(x, \frac{1}{n}\right)$. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ tends to x.
Proposition 6.13. Let X be a metric space, $\left(x_{n}\right)_{n \in \mathbb{N}}$ a sequence of points in X, and $x \in X$. The following conditions are equivalent:
(i) x is an adherence value of $\left(x_{n}\right)_{n \in \mathbb{N}}$ along the filter base $\{\{n, n+1, \ldots\}\}_{n \in \mathbb{N}}$,
(ii) there exists an infinite subset $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ of \mathbb{N}, with $n_{k}<n_{k+1}$, such that $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ tends to x along the filter base $\left\{\left\{n_{k}, n_{k+1}, \ldots\right\}\right\}_{k \in \mathbb{N}}$.
Proof. $($ ii $) \Rightarrow(i)$: The point x is then an adherence value of $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$, and consequently of $\left(x_{n}\right)_{n \in \mathbb{N}}$. $(i) \Rightarrow(i i)$: If d is the metric of X, there exist $n_{1} \in \mathbb{N}$ such that $d\left(x_{n_{1}}, x\right)<1, n_{2} \in \mathbb{N}$ such that $n_{2}>n_{1}$ and $d\left(x_{n_{2}}, x\right)<\frac{1}{2}, n_{3} \in \mathbb{N}$ such that $n_{3}>n_{2}$ and $d\left(x_{n_{3}}, x\right)<\frac{1}{3}$, and so on. So, the sequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ tends to x along $\left\{\left\{n_{k}, n_{k+1}, \ldots\right\}\right\}_{k \in \mathbb{N}}$.

Proposition 6.14. Let X, Y be metric spaces, $A \subseteq X, f: A \rightarrow Y$ a function, $a \in \bar{A}$, and $y \in Y$. The following conditions are equivalent:
(i) the point y is an adherence value of f along the filter $\{A \cap V\}_{V \in \mathscr{V}}$, where \mathscr{V} is a fundamental system of neighborhoods of a,
(ii) there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in A such that $\left(x_{n}\right)_{n \in \mathbb{N}}$ tends to a and $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ tends to y.

Proof. (ii) $\Rightarrow(i)$: On one side, if $V \in \mathscr{V}$, there exists $i \in \mathbb{N}$ such that $x_{n} \in A \cap V$ if $n \geq i$. On the other side, if W is a neighborhood of y, there exists $j \in \mathbb{N}$ such that $f\left(x_{n}\right) \in W$ if $n \geq j$. Then, $f\left(x_{n}\right) \in f(A \cap V) \cap W$ if $n \geq \max \{i, j\}$.
$(i) \Rightarrow(i i)$: Denote by $B_{X}(a, \rho)$ and $B_{Y}\left(y, \rho^{\prime}\right)$ the open balls of centers and radius a, y and ρ, ρ^{\prime} respectively. Take a point $x_{1} \in B_{X}(a, 1) \cap A$ such that $f\left(x_{1}\right) \in B_{Y}(y, 1)$, take a point $x_{2} \in B_{X}\left(a, \frac{1}{2}\right) \cap A$ such that $f\left(x_{2}\right) \in B_{Y}\left(y, \frac{1}{2}\right)$, take a point $x_{3} \in B_{X}\left(a, \frac{1}{3}\right) \cap A$ such that $f\left(x_{3}\right) \in B_{Y}\left(y, \frac{1}{3}\right)$, and so on. Hence, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ tends to a, and $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ tends to y.
Proposition 6.15. Let X, Y be metric spaces, $f: X \rightarrow Y$ a function, and $x \in X$. The following conditions are equivalent:
(i) f is continuous at x,
(ii) for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X that tends to x, the sequence $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ tends to $f(x)$.

Proof. $(i) \Rightarrow$ (ii) : Consider the filter base $\left\{\left\{x_{n}, x_{n+1}, \ldots\right\}\right\}_{n \in \mathbb{N}}$ and a neighborhood V of $f(x)$ in Y. There exists a neighborhood U of x in X such that $f(U) \subseteq V$. And there exists $k \in \mathbb{N}$ such that $\left\{x_{k}, x_{k+1}, \ldots\right\} \subseteq U$. Then, $\left\{f\left(x_{k}\right), f\left(x_{k+1}\right), \ldots\right\} \subseteq V$.
$(i i) \Rightarrow(i):$ Let d_{X} and d_{Y} be the metrics of X and Y respectively, and suppose that f is not continuous at x. There exists $\varepsilon \in \mathbb{R}_{+}^{*}$ such that, for any $\eta \in \mathbb{R}_{+}^{*}$, there is $y \in X$ with $d_{X}(x, y)<\eta$ yet $d_{Y}(f(x), f(y))>$ ε. If we successively take $\eta=1, \frac{1}{2}, \frac{1}{3}, \ldots$, we obtain points $y_{1}, y_{2}, y_{3}, \ldots$ of X such that $d_{X}\left(x, y_{n}\right)<\frac{1}{n}$ and $d_{Y}\left(f(x), f\left(y_{n}\right)\right)>\varepsilon$ for $n \in \mathbb{N}$. Then $\left(y_{n}\right)_{n \in \mathbb{N}}$ tends to x, but $\left(f\left(y_{n}\right)\right)_{n \in \mathbb{N}}$ does not tend to $f(x)$.

6.4 Complete Metric Spaces

Definition 6.16. Let X be a metric space with metric d. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of points in X is called a Cauchy sequence if, for every $\boldsymbol{\varepsilon} \in \mathbb{R}_{+}^{*}$, there exists $p \in \mathbb{N}$ such that $m, n \geq p$ implies $d\left(x_{m}, x_{n}\right)<\varepsilon$.

Proposition 6.17. Let X be a metric space with metric d. If a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of points in X has a limit in X, then it is a Cauchy sequence.

Proof. Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ tends to x. For every $\varepsilon \in \mathbb{R}_{+}^{*}$, there exists a positive integer p such that $n \geq p$ implies $d\left(x_{n}, x\right)<\frac{\varepsilon}{2}$. Then, if m, n are positive integers bigger than p, we have $d\left(x_{m}, x\right)<\frac{\varepsilon}{2}$ and $d\left(x_{n}, x\right)<\frac{\varepsilon}{2}$, which implies $d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x\right)+d\left(x_{n}, x\right)<\varepsilon$.

Definition 6.18. A metric space X is said to be complete if every Cauchy sequence of points in X has a limit in X.

Proposition 6.19. Let X be a metric space, $\left(x_{n}\right)_{n \in \mathbb{N}}$ a Cauchy sequence in X, and $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ a subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$. If the sequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ has a limit l, then $\left(x_{n}\right)_{n \in \mathbb{N}}$ also tends to l.

Proof. For every $\varepsilon \in \mathbb{R}_{+}^{*}$, there exists a positive integer p such that, if m, n are positive integers bigger than p, then $d\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{2}$. Fix a positive integer n bigger than p. Since $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ tends to l, then $\left(d\left(x_{n_{k}}, x_{n}\right)\right)_{k \in \mathbb{N}}$ tends to $d\left(l, x_{n}\right)$, so $d\left(l, x_{n}\right) \leq \frac{\varepsilon}{2}<\varepsilon$. As this is true for all positive integers $n \geq p$, then $\left(x_{n}\right)_{n \in \mathbb{N}}$ also tends to l.

Proposition 6.20. Let X be a complete metric space, and Y a closed subspace of X. Then Y is complete.

Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in Y. It is also a Cauchy sequence in X, hence has a limit l in X. We deduce from Proposition 6.12 that $l \in \bar{Y}$. But $\bar{Y}=Y$, thus $\left(x_{n}\right)_{n \in \mathbb{N}}$ has a limit in Y.

Proposition 6.21. Let X be a metric space, and Y a complete metric subspace of X. Then Y is closed in X.

Proof. Take $l \in \bar{Y}$. We know from Proposition 6.12 that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in Y that tends to l. So, we deduce Proposition 6.17 that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. It thus has a limit in Y since Y is complete. As l is its limit, we must have $l \in Y$, therefore $\bar{Y}=Y$.

Part II

Algebraic Topology

Chapter 7

Fundamental Groups

7.1 Homotopy of Paths

Definition 7.1. Let X be a topological space, and f, g two paths in X. These paths are said to be path homotopic if they have the same origin a, the same extremity b, and if there is a continuous function $F:[0,1] \times[0,1] \rightarrow X$ such that, if $s, t \in[0,1]$,

$$
\begin{aligned}
& F(s, 0)=f(s) \quad \text { and } \quad F(s, 1)=g(s) \\
& F(0, t)=a \quad \text { and } \quad F(1, t)=b
\end{aligned}
$$

In that case, one writes $f \simeq_{p} g$. The function F is called a path homotopy between f and g.
Example. Let f, g be paths in \mathbb{R}^{n}. The function $F:[0,1] \times[0,1] \rightarrow \mathbb{R}^{n}$ defined by

$$
F(x, t)=(1-t) f(x)+\operatorname{tg}(x)
$$

is a path homotopy between f and g.
Proposition 7.2. The relation \simeq_{p} on paths in a topological space X with fixed origins and extremities is an equivalence relation.

Proof. Given a path f, the function $F(x, t)=f(x)$ is the required path homotopy to get $f \simeq{ }_{p} f$.
If $f \simeq_{p} g$ is established by a path homotopy $F(x, t)$, then $G(x, t)=F(x, 1-t)$ is a path homotopy between g and f.
Suppose that $f \simeq_{p} g$ by means of a path homotopy F, and $g \simeq_{p} h$ by means of a path homotopy G, then $f \simeq_{p} h$ by means of the path homotopy $H:[0,1] \times[0,1] \rightarrow X$ defined by the equation

$$
H(x, t)= \begin{cases}F(x, 2 t) & \text { if } t \in\left[0, \frac{1}{2}\right] \\ G(x, 2 t-1) & \text { if } t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

If f is a path, denote its path-homotopy equivalence class by $[f]$.
Definition 7.3. Let X be a topological space, f a path in X from a to b, and g a path in X from b to c. Define the product $f * g$ of f and g to be the path h in X given by the equation

$$
h(s)= \begin{cases}f(2 s) & \text { for } s \in\left[0, \frac{1}{2}\right] \\ g(2 s-1) & \text { for } s \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

The product operation of Definition 7.3 extends to an operation on path-homotopy classes defined by

$$
[f] *[g]:=[f * g] .
$$

Lemma 7.4. Let X, Y be a topological space, $k: X \rightarrow Y$ a continuous function, and F is a path homotopy between two paths f, f^{\prime} in X.
(i) Then $k \circ F$ is a path homotopy in Y between $k \circ f$ and $k \circ f^{\prime}$.
(ii) Moreover, if g is a path in X with $f(1)=g(0)$, then $k \circ(f * g)=(k \circ f) *(k \circ g)$.

Proof. (i): The function $k \circ F:[0,1] \times[0,1] \rightarrow Y$ is continuous such that, if $s, t \in[0,1]$,

$$
\begin{aligned}
& k \circ F(s, 0)=k \circ f(s) \quad \text { and } \quad k \circ F(s, 1)=k \circ f^{\prime}(s), \\
& k \circ F(0, t)=k \circ f(0)=k \circ f^{\prime}(0) \quad \text { and } \quad k \circ F(1, t)=k \circ f(1)=k \circ f^{\prime}(1) .
\end{aligned}
$$

(ii): We have

$$
k \circ(f * g)(t)=k \circ\left\{\begin{array}{ll}
f(2 t) & \text { for } t \in\left[0, \frac{1}{2}\right] \\
g(2 t-1) & \text { for } t \in\left[\frac{1}{2}, 1\right]
\end{array}=\left\{\begin{array}{ll}
k \circ f(2 t) & \text { for } t \in\left[0, \frac{1}{2}\right] \\
k \circ g(2 t-1) & \text { for } t \in\left[\frac{1}{2}, 1\right]
\end{array}=(k \circ f) *(k \circ g)(t) .\right.\right.
$$

For $x \in X$, let e_{x} denote the constant path carrying all of $[0,1]$ to the point x. Given a path f in X from a to b, denote the reverse of f by \bar{f}. It is the path from b to a defined for $s \in[0,1]$ by $\bar{f}(s):=f(1-s)$.
Proposition 7.5. The operation $*$ on path-homotopy classes in a topological space X has the following properties:
(i) If $[f] *([g] *[h])$ is defined, so is $([f] *[g]) *[h]$, and they are equal.
(ii) If f is a path in X from a to b, then

$$
[f] *\left[e_{b}\right]=[f] \quad \text { and } \quad\left[e_{a}\right] *[f]=[f] .
$$

(iii) If f is a path in X from a to b, then

$$
[f] *[\bar{f}]=\left[e_{a}\right] \quad \text { and } \quad[\bar{f}] *[f]=\left[e_{b}\right] .
$$

Proof. (ii) : If e_{0} is the constant path at 0 , and $i:[0,1] \rightarrow[0,1]$ the identity map, then $e_{0} * i$ is a path from 0 to 1 . Since i and $e_{0} * i$ are paths in \mathbb{R}, there is a path homotopy F between them. Then $f \circ F$ is a path homotopy in X between the paths $f \circ i=f$ and $f \circ\left(e_{0} * i\right)=\left(f \circ e_{0}\right) *(f \circ i)=e_{a} * f$. Similarly, using the fact that $i * e_{1}$ and i are path homotopic in $[0,1]$, one shows that $[f] *\left[e_{b}\right]=[f]$.
(iii) : The path $i * \bar{i}$, that begins and ends at 0 , is path homotopic to the constant path e_{0} as paths in \mathbb{R} once again. Denoting F a path homotopy between them, we get from Lemma 7.4 that $f \circ F$ is a path homotopy between $f \circ e_{0}=e_{a}$ and $(f \circ i) *(f \circ \bar{i})=f * \bar{f}$. With a similar argument, using the fact that $\bar{i} * i$ and e_{1} are path homotopic in $[0,1]$, one shows that $[\bar{f}] *[f]=\left[e_{b}\right]$.
(i): We have

$$
f *(g * h)(t)=\left\{\begin{array}{ll}
f(2 t) & \text { for } t \in\left[0, \frac{1}{2}\right], \\
g * h(2 t-1) & \text { for } t \in\left[\frac{1}{2}, 1\right],
\end{array}= \begin{cases}f(2 t) & \text { for } t \in\left[0, \frac{1}{2}\right], \\
g(2(2 t-1)) & \text { for } t \in\left[\frac{1}{2}, \frac{3}{4}\right], \\
h(2(2 t-1)-1) & \text { for } t \in\left[\frac{3}{4}, 1\right]\end{cases}\right.
$$

$$
\text { and } \quad(f * g) * h(t)=\left\{\begin{array}{ll}
f * g(2 t) & \text { for } t \in\left[0, \frac{1}{2}\right], \\
h(2 t-1) & \text { for } t \in\left[\frac{1}{2}, 1\right],
\end{array}= \begin{cases}f(4 t) & \text { for } t \in\left[0, \frac{1}{4}\right], \\
g(4 t-1) & \text { for } t \in\left[\frac{1}{4}, \frac{1}{2}\right], \\
h(2 t-1) & \text { for } t \in\left[\frac{1}{2}, 1\right] .\end{cases}\right.
$$

Then $(f *(g * h)) \circ \alpha=(f * g) * h$ with $\alpha:[0,1] \rightarrow[0,1]$ defined by $\alpha(s)=\left\{\begin{array}{ll}2 s & \text { for } s \in\left[0, \frac{1}{4}\right] \\ s+\frac{1}{4} & \text { for } s \in\left[\frac{1}{4}, \frac{1}{2}\right] \\ \frac{s}{2}+\frac{1}{2} & \text { for } s \in\left[\frac{1}{2}, 1\right]\end{array}\right.$. As α and i are paths in \mathbb{R}, we get by Lemma 7.4 that $(f *(g * h)) \circ \alpha \simeq_{p}((f * g) * h) \circ i=(f * g) * h$.

7.2 Fundamental Groups

Definition 7.6. Let X be a topological space, and $a \in X$. A path in X that starts and ends at a is called a loop at the basepoint a. The set of all homotopy classes $[f]$ of loops $f:[0,1] \rightarrow X$ at the basepoint a is denoted $\pi_{1}(X, a)$.

Proposition 7.7. Let X be a topological space, and $a \in X$. The set $\pi_{1}(X, a)$ is a group with respect to the product $*$.

Proof. By restricting to loops f, g with a fixed basepoint, we guarantee that the product $f * g$ or more exactly the product $[f] *[g]=[f * g]$ is defined. It remains to verify the three axioms for a group:

- From Proposition 7.5 (i), for all $[f],[g],[h] \in \pi_{1}(X, a),[f] *([g] *[h])=([f] *[g]) *[h]$.
- From Proposition 7.5 (ii), for every $[f] \in \pi_{1}(X, a),[f] *\left[e_{a}\right]=[f]$ and $\left[e_{a}\right] *[f]=[f]$.
- From Proposition 7.5 (iii), for every $[f] \in \pi_{1}(X, a),[f] *[\bar{f}]=\left[e_{a}\right]$ and $[\bar{f}] *[f]=\left[e_{a}\right]$.

Definition 7.8. Let X be a topological space, and $a \in X$. The group $\pi_{1}(X, a)$ is called the fundamental group of X at the basepoint a.

Example. For a convex set X in \mathbb{R}^{n} with basepoint $a \in X, \pi_{1}(X, a)$ is the trivial one-element group. Indeed the function $F:[0,1] \times[0,1] \rightarrow \mathbb{R}^{n}$ defined by

$$
F(x, t)=(1-t) f(x)+t g(x)
$$

is a path homotopy between any loops f, g based at a.
Definition 7.9. A topological space X is said to be simply connected if it is a path connected space and if $\pi_{1}(X, a)$ is the trivial one-element group for every $a \in X$.

Proposition 7.10. Let X be a simply connected topological space. Then, any paths in X having the same origin and extremity are path homotopic.

Proof. Let f, g be paths in X from a to b. Then $f * \bar{g}$ is defined and is a loop on X based at a. Since X is simply connected, $f * g$ is path homotopic to e_{a}. Using Proposition 7.5, we get

$$
[f]=[f] *\left[e_{b}\right]=[f] *[\bar{g} * g]=[f * \bar{g}] *[g]=\left[e_{a}\right] *[g]=[g] .
$$

Proposition 7.11. Let X be a topological space, $a, b \in X$, and f a path from a to b. Define the map $\hat{f}: \pi_{1}(X, a) \rightarrow \pi_{1}(X, b)$ by

$$
\hat{f}([h]):=[\bar{f}] *[h] *[f] .
$$

Then the map \hat{f} is a group isomorphism.
Proof. Let $[g],[h] \in \pi_{1}(X, a)$. We have

$$
\begin{aligned}
\hat{f}([g]) * \hat{f}([h]) & =([\bar{f}] *[g] *[f]) *([\bar{f}] *[h] *[f]) \\
& =[\bar{f}] *[g] *[h] *[f] \\
& =\hat{f}([g] *[h])
\end{aligned}
$$

Then, \hat{f} is a homomorphism. To prove that \hat{f} is an isomorphism, we show that $\hat{\bar{f}}: \pi_{1}(X, b) \rightarrow \pi_{1}(X, a)$ defined for every $[h] \in \pi_{1}(X, b)$ by

$$
\widehat{\bar{f}}([h]):=[f] *[h] *[\bar{f}]
$$

is an inverse for \hat{f}. We have $\widehat{\bar{f}} \circ \hat{f}([h])=[f] *([\bar{f}] *[h] *[f]) *[\bar{f}]=[h]$. A similar computation shows that $\hat{f} \circ \widehat{\bar{f}}([h])=[h]$.

Suppose that $h: X \rightarrow Y$ is a continuous function that carries the point a of X to the point b of Y. One denotes this fact by writing $h:(X, a) \rightarrow(Y, b)$.

Definition 7.12. Let X, Y be topological spaces, and $h:(X, a) \rightarrow(Y, b)$ a continuous function. Define $h_{*}: \pi_{1}(X, a) \rightarrow \pi_{1}(Y, b)$ by

$$
h_{*}([f]):=[h \circ f] .
$$

The map h_{*} is called the homomorphism induced by h relative to the basepoint a.
Proposition 7.13. Let X, Y, Z be topological spaces.
(i) If $h:(X, a) \rightarrow(Y, b)$ and $k:(Y, b) \rightarrow(Z, c)$ are continuous maps, then $(k \circ h)_{*}=k_{*} \circ h_{*}$.
(ii) If $i:(X, a) \rightarrow(X, a)$ is the identity map, then i_{*} is the identity homomorphism.

Proof. (i) : We have both equalities

$$
\begin{aligned}
& (k \circ h)_{*}([f])=[(k \circ h) \circ f] \\
& \left(k_{*} \circ h_{*}\right)([f])=k_{*}\left(h_{*}([f])\right)=k_{*}([h \circ f])=[k \circ(h \circ f)] .
\end{aligned}
$$

(ii) : We have $i_{*}([f])=[i \circ f]=[f]$.

Corollary 7.14. Let X, Y be topological spaces. If $h:(X, a) \rightarrow(Y, b)$ is a homeomorphism from X to Y, then h_{*} is an isomorphism from $\pi_{1}(X, a)$ to $\pi_{1}(Y, b)$.

Proof. Let $k:(Y, b) \rightarrow(X, a)$ be the inverse of h. Then $k_{*} \circ h_{*}=(k \circ h)_{*}=i_{*}$, where i is the identity map of (X, a). Besides, $h_{*} \circ k_{*}=(h \circ k)_{*}=j_{*}$, where j is the identity map of (Y, b). As i_{*} and j_{*} are the identity homomorphisms of $\pi_{1}(X, a)$ and $\pi_{1}(Y, b)$ respectively, k_{*} is then the inverse of h_{*}.

Proposition 7.15. Let X, Y be topological spaces, and $(a, b) \in X \times Y$. Then $\pi_{1}(X \times Y,(a, b))$ is isomorphic to $\pi_{1}(X, a) \times \pi_{1}(Y, b)$.

Proof. We know from Proposition 3.14 that the existence of a loop $f:[0,1] \rightarrow X \times Y$ at the basepoint (a, b) is equivalent to the existence of a loop $g:[0,1] \rightarrow X$ at the basepoint a, and a loop $h:[0,1] \rightarrow Y$ at the basepoint b such that $f=(g, h)$. We also know from Proposition 3.14 that the existence of a path homotopy $F:[0,1] \times[0,1] \rightarrow X \times Y$ between two loops f_{1}, f_{2} at the basepoint (a, b) is equivalent to the existence of a path homotopy $G:[0,1] \times[0,1] \rightarrow X$ between two loops g_{1}, g_{2} at the basepoint a, and a path homotopy $H:[0,1] \times[0,1] \rightarrow Y$ between two loops h_{1}, h_{2} at the basepoint b such that $f_{1}=$ $\left(g_{1}, h_{1}\right), f_{2}=\left(g_{2}, h_{2}\right)$, and $F=(G, H)$. Thus, the function $\alpha: \pi_{1}(X \times Y,(a, b)) \rightarrow \pi_{1}(X, a) \times \pi_{1}(Y, b)$ defined, for a loop $f=(g, h)$ at the basepoint (a, b), by $\alpha([f])=([g],[h])$ is bijective. It can also be extended to a group homomorphism since, for two loops $f_{1}=\left(g_{1}, h_{1}\right), f_{2}=\left(g_{2}, h_{2}\right)$ at the basepoint (a, b), we have

$$
\alpha\left(\left[f_{1}\right] *\left[f_{2}\right]\right)=\alpha\left(\left[f_{1} * f_{2}\right]\right)=\left(\left[g_{1} * g_{2}\right],\left[h_{1} * h_{2}\right]\right)=\left(\left[g_{1}\right] *\left[g_{2}\right],\left[h_{1}\right] *\left[h_{2}\right]\right)=\alpha\left(\left[f_{1}\right]\right) * \alpha\left(\left[f_{2}\right]\right)
$$

Hence, α is an isomorphism.

7.3 The Fundamental Group of \mathbb{S}^{n}

Lemma 7.16. For $p_{1}, p_{2}, p_{3} \in \mathbb{R}^{n}$, the triangle of vertices p_{1}, p_{2}, p_{3} is

$$
T=\left\{t_{1} p_{1}+t_{2} p_{2}+t_{3} p_{3} \mid t_{1}, t_{2}, t_{3} \in \mathbb{R}_{+}, t_{1}+t_{2}+t_{3}=1\right\}
$$

Consider a topological space X, and a continuous function $f: T \rightarrow X$. For $i, j \in\{1,2,3\}$ with $i<j$, the standard parametrisation of f restricted to the edge from p_{i} to p_{j} is the path

$$
f_{i j}:[0,1] \rightarrow X, \quad t \mapsto f\left((1-t) p_{i}+t p_{j}\right)
$$

from $f\left(p_{i}\right)$ to $f\left(p_{j}\right)$. We have, $f_{13} \simeq_{p} f_{12} * f_{23}$.
Proof. Consider the function

$$
q:[0,1] \times[0,1] \rightarrow T, \quad(t, s) \mapsto \begin{cases}(1-t-t s) p_{1}+2 t s p_{2}+(t-t s) p_{3} & \text { for } t \leq \frac{1}{2} \\ (1-t-s-t s) p_{1}+2(1-t) s p_{2}+(t-s+t s) p_{3} & \text { for } t \geq \frac{1}{2}\end{cases}
$$

We have

$$
\begin{aligned}
& f(q(t, 0))=\left\{\begin{array}{ll}
f\left((1-t) p_{1}+t p_{3}\right)=f_{13}(t) & \text { for } t \leq \frac{1}{2} \\
f\left((1-t) p_{1}+t p_{3}\right)=f_{13}(t) & \text { for } t \geq \frac{1}{2}
\end{array}=f_{13}(t)\right.
\end{aligned}, \begin{array}{ll}
f\left((1-2 t) p_{1}+2 t p_{2}\right)=f_{12}(2 t) & \text { for } t \leq \frac{1}{2} \\
f\left((1-(2 t-1)) p_{2}+(2 t-1) p_{3}\right)=f_{23}(2 t-1) & \text { for } t \geq \frac{1}{2}
\end{array}=f_{12} * f_{23}(t), ~\left\{(q(t, 1))=\left\{\begin{array}{l}
f(0, s))=f\left(p_{1}\right) \quad \text { and } \quad f(q(1, s))=f\left(p_{3}\right) .
\end{array}\right.\right.
$$

Hence, the function

$$
F:[0,1] \times[0,1] \rightarrow X, \quad(t, s) \mapsto f(q(t, s))
$$

is a path homotopy from f_{13} to $f_{12} * f_{23}$.

Lemma 7.17. Let X be a topological space, $f:[0,1] \rightarrow X$ a path in X, and $a_{0}, \ldots, a_{n} \in \mathbb{R}$ such that $0=a_{0}<a_{1}<\cdots<a_{n}=1$. For $i \in\{1, \ldots, n\}$, let $l_{i}:[0,1] \rightarrow\left[a_{i-i}, a_{i}\right]$ be the affine function such that $l_{i}(0)=a_{i-1}$ and $l_{i}(1)=a_{i}$, and

$$
f_{i}:[0,1] \rightarrow X, \quad t \mapsto f \circ l_{i}(t)
$$

the standard parametrisation of f restricted to $\left[a_{i-i}, a_{i}\right]$. Then, $[f]=\left[f_{1}\right] * \cdots *\left[f_{n}\right]$.
Proof. Using Lemma 7.16 with f equal to the identity map $i_{\left[a_{0}, a_{2}\right]}$ on $\left[a_{0}, a_{2}\right]$, we prove that $l_{1} * l_{2} \simeq_{p}$ l_{12} which is the affine function such that $l_{12}(0)=a_{0}$ and $l_{12}(1)=a_{2}$. More generally, for $k \in\{3, \ldots, n\}$, we can use Lemma 7.16 with f equal to the identity map $i_{\left[a_{0}, a_{k}\right]}$ on $\left[a_{0}, a_{k}\right]$ to prove that $l_{1 k-1} * l_{k} \simeq{ }_{p} l_{1 k}$, where $l_{1 k-1}$ and $l_{1 k}$ are the affine functions such that $l_{1 k-1}(0)=l_{1 k}=a_{0}, l_{1 k-1}(1)=a_{k-1}$, and $l_{1 k}=a_{k}$. Hence, we successively obtain

$$
\begin{aligned}
l_{1} * l_{2} * l_{3} * \cdots * l_{n} & =l_{12} * l_{3} * \cdots * l_{n} \\
& =l_{13} * \cdots * l_{n} \\
& =l_{1 n}
\end{aligned}
$$

which is the identity map on $[0,1]$. We deduce from Lemma 7.4 that

$$
\begin{aligned}
& \left(f \circ l_{1}\right) *\left(f \circ l_{2}\right) *\left(f \circ l_{3}\right) * \cdots *\left(f \circ l_{n}\right)=f \circ l_{1 n}=f \\
& f_{1} * f_{2} * f_{3} * \cdots * f_{n}=f \\
& {\left[f_{1}\right] *\left[f_{2}\right] *\left[f_{3}\right] * \cdots *\left[f_{n}\right]=[f]}
\end{aligned}
$$

Proposition 7.18. Let X be topological space, and A, B two open subsets of X such that $X=A \cup B$ and $A \cap B \neq \varnothing$. Suppose that A, B are path connected, and take $x \in A \cap B$. Consider the inclusion maps $i: A \hookrightarrow X$ and $j: B \hookrightarrow X$. Then, $\pi_{1}(X, x)$ is generated by the images of the induced homomorphisms

$$
i_{*}: \pi_{1}(A, x) \rightarrow \pi_{1}(X, x) \quad \text { and } \quad j_{*}: \pi_{1}(B, x) \rightarrow \pi_{1}(X, x)
$$

Proof. Let $f:[0,1] \rightarrow X$ be a loop based at x. We know from Theorem 8.10 that there exists a positive integer n such that, for every $i \in\{1, \ldots, n\}$, the restriction of f to the interval $\left[\frac{i-1}{n}, \frac{i}{n}\right]$ is contained in A or in B. Let f_{i} be the standard parametrisation of f restricted to $\left[\frac{i-1}{n}, \frac{i}{n}\right]$, that is

$$
f_{i}:[0,1] \rightarrow A(\text { or } B), \quad t \mapsto f\left(\frac{i-1+t}{n}\right)
$$

Since A, B are path connected, we can find a path h_{i} from $f\left(\frac{i}{n}\right)$ to x so that

- if $f\left(\frac{i}{n}\right) \in A$, then $h_{i}:[0,1] \rightarrow A$ is a path in A,
- if $f\left(\frac{i}{n}\right) \in B$, then $h_{i}:[0,1] \rightarrow A$ is a path in B.

Using Lemma 7.17, we may write

$$
\begin{aligned}
f & =f_{1} * f_{2} * \cdots * f_{i} * \cdots * f_{n-1} * f_{n} \\
& =f_{1} * h_{1} * \bar{h}_{1} * f_{2} * h_{2} * \cdots * \bar{h}_{i-1} * f_{i} * h_{i} * \cdots * \bar{h}_{n-2} * f_{n-1} * h_{n-1} * \bar{h}_{n-1} * f_{n} \\
& =k_{1} * k_{2} * \cdots * k_{n-1} * k_{n},
\end{aligned}
$$

where

$$
k_{1}=f_{1} * h_{1}, k_{2}=\bar{h}_{1} * f_{2} * h_{2}, \ldots, k_{i}=\bar{h}_{i-1} * f_{i} * h_{i}, \ldots, k_{n-1}=\bar{h}_{n-2} * f_{n-1} * h_{n-1}, k_{n}=\bar{h}_{n-1} * f_{n} .
$$

To finish, for every $i \in\{1, \ldots, n\}, k_{i}$ is a loop based at x in A or in B.
Corollary 7.19. Let X be a topological space, and A, B open sets of X such that $X=A \cup B$ and $A \cap B \neq \varnothing$. If A and B are simply connected, then X is simply connected.

Proof. As A and B are path connected, we deduce from Proposition 5.18 that X is path connected. Choose a base point $x \in A \cap B$. Since $\pi_{1}(A, x)$ and $\pi_{1}(B, x)$ are the trivial one-element group, $\pi_{1}(X, x)$ is then generated by the neutral element by Proposition 7.18, so it is trivial.

Corollary 7.20. If n is a positive integer such that $n \geq 2$, then \mathbb{S}^{n} is simply connected.
Proof. Write $\mathbb{S}^{n}=A \cup B$, where $A=\mathbb{S}^{n} \backslash\{(0, \ldots, 0,1)\}$ and $B=\mathbb{S}^{n} \backslash\{(0, \ldots, 0,-1)\}$. We know from the stereographic projection of A onto \mathbb{R}^{n} that A is homeomorphic to \mathbb{R}^{n}. Moreover, the function $f: A \rightarrow B, a \mapsto-a$ is a homeomorphism between A and B. Hence, A and B are simply connected, and also \mathbb{S}^{n} by Corollary 7.19.

Chapter 8

Covering Spaces

8.1 Covering Maps

Definition 8.1. Let X, Y be topological spaces, and $p: X \rightarrow Y$ a continuous surjective function. An open set A of Y is said to be evenly covered by p if the inverse image $p^{-1}(A)$ is equal to $\bigsqcup_{i \in I} A_{i}$ such that A_{i} is an open subset of X, and the restriction of p to A_{i} is a homeomorphism of A_{i} to A. The family $\left\{A_{i}\right\}_{i \in I}$ is called a partition of $p^{-1}(A)$ into slices.

Definition 8.2. Let X, Y be open topological spaces, and $p: X \rightarrow Y$ a continuous surjective function. If every point a of Y has an open neighborhood A that is evenly covered by p, then p is called a covering map, and X is said to be a covering space of Y.

Example. Consider \mathbb{R} with the usual topology, and $\mathbb{S}^{1}=\{(\cos t, \sin t) \mid t \in[0,2 \pi]\}$ equipped with the topology induced by the usual topology of \mathbb{R}^{2}. For any point $a=(\cos u, \sin u) \in \mathbb{S}^{1}$, the set $U_{a}=\{(\cos t, \sin t) \mid t \in(u-1, u+1)\}$ is then an open neighborhood of a. The function $p: \mathbb{R} \rightarrow \mathbb{S}^{1}$ given by $p(x)=(\cos 2 \pi x, \sin 2 \pi x)$ is continuous and surjective. Moreover,

- we have $p^{-1}\left(U_{a}\right)=\bigsqcup_{k \in \mathbb{Z}}\left(\frac{u-1}{2 \pi}+k, \frac{u+1}{2 \pi}+k\right)$, where $\left(\frac{u-1}{2 \pi}+k, \frac{u+1}{2 \pi}+k\right)$ is open in \mathbb{R},
- the restriction p_{k} of p to $\left(\frac{u-1}{2 \pi}+k, \frac{u+1}{2 \pi}+k\right)$ is clearly a homeomorphism onto U_{a}.

Then, p is a covering map.
Definition 8.3. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a function. A function $s: Y \rightarrow X$ is called a section of f is $p(s(y))=y$ for every $y \in Y$.

Proposition 8.4. Let X, Y be topological spaces, and $p: X \rightarrow Y$ a covering map. For every evenly covered set $V \subseteq Y$, and every point $x \in p^{-1}(V)$, there exists a continuous section $s: V \rightarrow p^{-1}(V)$ of the restriction $p: p^{-1}(V) \rightarrow V$ such that $s(p(x))=x$. If V is connected, then s is unique.

Proof. We can write $p^{-1}(V)=U \sqcup W$ such that U and W are open, $x \in U$, and the restriction $p_{\mid U}: U \rightarrow$ V is a homeomorphism. The inverse $s=p_{\mid U}^{-1}$ is clearly a continuous section of $p_{\mid U}$, and consequently of p by extending its codomain to $p^{-1}(V)$.
If V is connected, then U is connected and is a connected component of $p^{-1}(V)$. Suppose $r: V \rightarrow X$ is another continuous section of p such that $r(p(x))=x$. Since $r(V) \subseteq p^{-1}(V)$ and V is connected, then
$r(V)$ is contained in the connected component of $p^{-1}(V)$ that contains x which is U. As $p(r(y))=y$ for every $y \in V, r: V \rightarrow U$ is then the inverse of $p_{\mid U}: U \rightarrow V$.

Proposition 8.5. Let X, Y be topological spaces, and $p: X \rightarrow Y$ a covering map. If Y_{0} is a subspace of Y, and if $X_{0}=p^{-1}\left(Y_{0}\right)$, then the map $p_{0}: X_{0} \rightarrow Y_{0}$ obtained by restricting p is a covering map.
Proof. Given $y \in Y_{0}$, let V be an open set in Y containing y that is evenly covered by p. If $\left\{U_{i}\right\}_{i \in I}$ is a partition of $p^{-1}(V)$ into slices, then $V \cap Y_{0}$ is a neighborhood of y in Y_{0}, and $\left\{U_{i} \cap X_{0}\right\}_{i \in I}$ is formed by disjoint open sets in X_{0} whose union is $p^{-1}\left(V \cap Y_{0}\right)$. Moreover, the restriction of p to $U_{i} \cap X_{0}$ is a homeomorphism onto $V \cap Y_{0}$.

Proposition 8.6. Let $X, X^{\prime}, Y, Y^{\prime}$ be topological spaces, and $p: X \rightarrow Y, p^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ covering maps. Then $p \times p^{\prime}: X \times X^{\prime} \rightarrow Y \times Y^{\prime}$ is a covering map.

Proof. Let $\left(y, y^{\prime}\right) \in Y \times Y^{\prime}$, and V, V^{\prime} neighborhoods of y, y^{\prime} respectively, that are evenly covered by p, p^{\prime} respectively. Let $\left\{U_{i}\right\}_{i \in I},\left\{U_{j}^{\prime}\right\}_{j \in J}$ be partitions into slices of $p^{-1}(V), p^{\prime-1}\left(V^{\prime}\right)$ respectively. Then $\left(p \times p^{\prime}\right)^{-1}\left(V \times V^{\prime}\right)=\bigsqcup_{\substack{i \in I \\ j \in J}} U_{i} \times U_{j}^{\prime}$. Moreover, the restriction of $p \times p^{\prime}$ to $U_{i} \times U_{j}^{\prime}$ is a homeomorphism onto $V \times V^{\prime}$.

8.2 Function Liftings

Definition 8.7. Let E, X, Y be topological spaces, $p: X \rightarrow Y$ a covering map, and $f: E \rightarrow Y$ a continuous function. A lifting of f is a function $\tilde{f}: E \rightarrow X$ such that $p \circ \tilde{f}=f$.

Example. Consider the covering map $p: \mathbb{R} \rightarrow \mathbb{S}^{1}$ defined by $p(x)=(\cos 2 \pi x, \sin 2 \pi x)$. The path $f:[0,1] \rightarrow \mathbb{S}^{1}$ from $(\underset{\sim}{1}, 0)$ to $(-1,0)$ given by $f(t)=(\cos \pi t, \sin \pi t)$ lifts to the path $\tilde{f}:[0,1] \rightarrow \mathbb{R}$ from 0 to $\frac{1}{2}$ given by $\tilde{f}(t)=\frac{t}{2}$. The path $g:[0,1] \rightarrow \mathbb{S}^{1}$ given by $g(t)=(\cos \pi t,-\sin \pi t)$ from $(1,0)$ to $(-1,0)$ lifts to the path $\tilde{g}:[0,1] \rightarrow \mathbb{R}$ from 0 to $-\frac{1}{2}$ given by $\tilde{g}(t)=-\frac{t}{2}$.

Lemma 8.8. Let X, Y be topological spaces, and $p: X \rightarrow Y$ a covering map. Consider the subspace

$$
X \times_{p} X=\{(a, b) \in X \times X \mid p(a)=p(b)\}
$$

of the product space $X \times X$. Then, $\Delta=\{(a, a) \mid a \in X\}$ is an open and a closed subset of $X \times{ }_{p} X$.
Proof. Take $(x, x) \in \Delta$ and choose an open set $U \subseteq X$ such that $x \in U$ and the restriction $p: U \rightarrow Y$ is injective. Then, $(U \times U) \cap\left(X \times{ }_{p} X\right)=U \times{ }_{p} U$ is an open neighborhood of (x, x) in $X \times{ }_{p} X$. As $U \times{ }_{p} U=\{(a, b) \in U \times U \mid p(a)=p(b)\}=\{(a, a) \mid a \in U\} \subseteq \Delta$, then Δ is a neighborhood of points, so is open in $X \times{ }_{p} p$ by Proposition 1.9 .
Take $\left(x_{1}, x_{2}\right) \in X \times{ }_{p} X \backslash \Delta$, and choose an evenly covered open set $V \subseteq Y$ containing $p\left(x_{1}\right)=p\left(x_{2}\right)$. Since $x_{1} \neq x_{2}$, they cannot be in the same slice, so there exist disjoint open sets $U_{1}, U_{2} \in p^{-1}(V)$ such that $x_{1} \in U_{1}$ and $x_{2} \in U_{2}$. Therefore, the set $\left(U_{1} \times U_{2}\right) \cap\left(X \times{ }_{p} X\right)$ contains $\left(x_{1}, x_{2}\right)$, is open in $X \times{ }_{p} X$, and is included in $X \times{ }_{p} X \backslash \Delta$. We deduce from Proposition 1.9 that $X \times{ }_{p} X \backslash \Delta$ is open, so Δ is closed in $X \times{ }_{p} X$.

Lemm 8.9. Let X, Y be topological spaces, $p: X \rightarrow Y$ a covering map, E a connected space, and $f: E \rightarrow Y$ a continuous function. If $g: E \rightarrow X$ and $h: E \rightarrow X$ are two liftings of f, we have either $g=h$ or $g(e) \neq h(e)$ for every $e \in E$.

Proof. Recall that $X \times_{Y} X=\{(a, b) \in X \times X \mid p(a)=p(b)\}$ and $\Delta=\{(a, a) \mid a \in X\}$. Consider the continuous function $\Phi: E \rightarrow X \times_{Y} X$ defined by $\Phi(e)=(g(e), h(e))$. Let $A=\{e \in E \mid g(e)=$ $h(e)\}=\Phi^{-1}(\Delta)$. We know from Lemma 8.8 that Δ is open and closed in $X \times{ }_{p} X$. Then, A is open and closed in E. Since E is connected, either $A=E$ or $A=\varnothing$.

Theorem 8.10 (Lebesgue number). Let X be a compact metric space with metric d, Y a topological space, \mathscr{O} a family of open sets covering Y, and $f: X \rightarrow Y$ a continuous function. There exists $\rho \in \mathbb{R}_{+}^{*}$ such that, for any $x \in X, f(B(x, \rho))$ is contained in an open set of \mathscr{O}.

Proof. For any $n \in \mathbb{N}$, let X_{n} be the set of points $x \in X$ having the property that there exists $U \in \mathscr{O}$ such that $B\left(x, 2^{-n}\right) \subseteq f^{-1}(U)$. For any $x \in X$, there exists $U \in \mathscr{O}$ such that $x \in f^{-1}(U)$. As $f^{-1}(U)$ is open, there exists $n \in \mathbb{N}$ such that $B\left(x, 2^{-n}\right) \subseteq f^{-1}(U)$, then $\bigcup_{n \in \mathbb{N}} X_{n}=X$.
It is clear that $X_{n} \subseteq X_{n+1}$. Moreover, $X_{n} \subseteq X_{n+1}^{\circ}$. Indeed, let $x \in X_{n}$ and $U \in \mathscr{O}$ such that $B\left(x, 2^{-n}\right) \subseteq$ $f^{-1}(U)$. For every $z \in X$ such that $d(x, z)<2^{-n-1}$, we have $B\left(z, 2^{-n-1}\right) \subseteq B\left(x, 2^{-n}\right) \subseteq f^{-1}(U)$, then $z \in X_{n+1}$. Hence $B\left(x, 2^{-n-1}\right) \subseteq X_{n+1}$, meaning that X_{n+1} is a neighborhood of x.
The fact $X_{n} \subseteq X_{n+1}^{\circ}$ implies $\bigcup_{n \in \mathbb{N}} X_{n} \subseteq \bigcup_{n \in \mathbb{N}} X_{n}^{\circ}$, and then $\bigcup_{n \in \mathbb{N}} X_{n}^{\circ}=X$. As X is compact, $X=X_{n}^{\circ}$ for some $n \in \mathbb{N}$, and consequently $X=X_{n}$.

Theorem 8.11. Let X, Y be topological spaces, $p: X \rightarrow Y$ a covering map, and $(a, b) \in X \times Y$ such that $p(a)=b$. Any path $f:[0,1] \rightarrow Y$ beginning at b has a unique lifting to a path $\tilde{f}:[0,1] \rightarrow X$ beginning at a.

Proof. We know from Lemma 8.9 there exists at most one lifting $\tilde{f}:[0,1] \rightarrow X$ such that $\tilde{f}(0)=a$. Then, the existence remains. Let \mathscr{O} be a family of evenly covered open sets covering Y. We know from Theorem 8.10 that there exist $n \in \mathbb{N}$ and $V_{1}, \ldots, V_{n} \in \mathscr{O}$ such that $f\left(\left[\frac{i-1}{n}, \frac{i}{n}\right]\right) \subseteq V_{i}$ for every $i \in\{1, \ldots, n\}$. We recursively define n continuous functions $g_{i}:\left[\frac{i-1}{n}, \frac{i}{n}\right] \rightarrow X$ for every $i \in\{1, \ldots, n\}$ such that

- $\forall t \in\left[\frac{i-1}{n}, \frac{i}{n}\right], p\left(g_{i}(t)\right)=f(t)$,
- $g_{1}(0)=a$, and $g_{i}\left(\frac{i}{n}\right)=g_{i+1}\left(\frac{i}{n}\right)$.

Using Proposition 8.4, we deduce the existence of a section $s_{1}: V_{1} \rightarrow p^{-1}\left(V_{1}\right)$ of the restriction $p: p^{-1}\left(V_{1}\right) \rightarrow V_{1}$ such that $s_{1}(p(a))=a$. Then, we may define $g_{1}:\left[0, \frac{1}{n}\right] \rightarrow X$ by $g_{1}(t)=s_{1}(f(t))$. Suppose that g_{i} has already been defined, and consider a section $s_{i+1}: V_{i+1} \rightarrow p^{-1}\left(V_{i+1}\right)$ of the restriction $p: p^{-1}\left(V_{i+1}\right) \rightarrow V_{i+1}$ such that $s_{i+1}\left(f\left(\frac{i}{n}\right)\right)=s_{i+1}\left(p\left(g_{i}\left(\frac{i}{n}\right)\right)\right)=g_{i}\left(\frac{i}{n}\right)$. We may define $g_{i+1}:\left[\frac{i}{n}, \frac{i+1}{n}\right] \rightarrow X$ by $g_{i+1}(t)=s_{i+1}(f(t))$. Hence $g_{1} * g_{2} * \cdots * g_{n}$ is the required lifting \tilde{f}.

Proposition 8.12. Let X, Y be topological spaces, $p: X \rightarrow Y$ a covering map, and $(a, b) \in X \times Y$ such that $p(a)=b$. Consider a continuous function $F:[0,1] \times[0,1] \rightarrow Y$ such that $F(0,0)=b$. There exists a unique lifting of F to a continuous function

$$
\tilde{F}:[0,1] \times[0,1] \rightarrow X \quad \text { such that } \quad \tilde{F}(0,0)=a .
$$

Proof. We know from Lemma 8.9 there exists at most one lifting $\tilde{F}:[0,1] \times[0,1] \rightarrow X$ such that $\tilde{F}(0,0)=a$. Then, the existence remains.
Let \mathscr{O} be a family of evenly covered open sets covering Y. We know from Theorem 8.10 that there exist $m, n \in \mathbb{N}$ and $V_{11}, \ldots, V_{m n} \in \mathscr{O}$ such that $F\left(\left[\frac{i-1}{m}, \frac{i}{m}\right] \times\left[\frac{j-1}{n}, \frac{j}{n}\right]\right) \subseteq V_{i j}$ for every $(i, j) \in\{1, \ldots, m\} \times\{1, \ldots, n\}$. We recursively define on each row and from the bottom to the top $m n$ continuous functions $\tilde{F}_{i j}:\left[\frac{i-1}{m}, \frac{i}{m}\right] \times\left[\frac{j-1}{n}, \frac{j}{n}\right] \rightarrow X$ for every $(i, j) \in\{1, \ldots, m\} \times\{1, \ldots, n\}$ such that

- $\forall(s, t) \in\left[\frac{i-1}{n}, \frac{i}{n}\right] \times\left[\frac{j-1}{n}, \frac{j}{n}\right], p\left(\tilde{F}_{i j}(s, t)\right)=F(s, t)$,
- $\tilde{F}_{11}(0,0)=a$ and $\tilde{F}_{i 1}\left(\frac{i}{m}, 0\right)=\tilde{F}_{i+11}\left(\frac{i}{m}, 0\right)$,
- $\tilde{F}_{1 j+1}\left(0, \frac{j}{n}\right)=\tilde{F}_{1 j}\left(0, \frac{j}{n}\right)$ and $\tilde{F}_{i 1+1}\left(\frac{i}{m}, \frac{j}{n}\right)=\tilde{F}_{i+1 j+1}\left(\frac{i}{m}, \frac{j}{n}\right)$.

Using Proposition 8.4, we deduce the existence of a section $s_{11}: V_{11} \rightarrow p^{-1}\left(V_{11}\right)$ of the restriction $p: p^{-1}\left(V_{11}\right) \rightarrow V_{11}$ such that $s_{11}(p(a))=a$. Then, we may define $\tilde{F}_{11}:\left[0, \frac{1}{m}\right] \times\left[0, \frac{1}{n}\right] \rightarrow X$ by $\tilde{F}_{11}(s, t)=s_{11}(F(s, t))$. Suppose that $\tilde{F}_{11}, \ldots, \tilde{F}_{i j}$ have already been defined, and consider a section $s_{i+1, j}: V_{i+1, j} \rightarrow p^{-1}\left(V_{i+1, j}\right)$ of the restriction $p: p^{-1}\left(V_{i+1, j}\right) \rightarrow V_{i+1, j}$ such that

$$
s_{i+1, j}\left(F\left(\frac{i}{m}, \frac{j}{n}\right)\right)=s_{i+1, j}\left(p\left(\tilde{F}_{i j}\left(\frac{i}{m}, \frac{j}{n}\right)\right)\right)=\tilde{F}_{i j}\left(\frac{i}{m}, \frac{j}{n}\right) .
$$

We may define $\tilde{F}_{i+1, j}:\left[\frac{i}{m}, \frac{i+1}{m}\right] \times\left[\frac{j}{n}, \frac{j+1}{n}\right] \rightarrow X$ by $\tilde{F}_{i+1, j}=s_{i+1}(F(s, t))$.
Remark that, due to the uniqueness of the lifting of the path $F\left(\frac{i}{m}, \frac{j-1+t}{n}\right)$ with variable t beginning at $\tilde{F}_{i j}\left(\frac{i}{m}, \frac{j-1}{n}\right)=\tilde{F}_{i+1 j}\left(\frac{i}{m}, \frac{j-1}{n}\right)$, we have

$$
\forall(s, t) \in\left\{\frac{i}{m}\right\} \times\left[\frac{j-1}{n}, \frac{j}{n}\right], \tilde{F}_{i j}(s, t)=\tilde{F}_{i+1 j}(s, t) .
$$

Using the same argument with the lifting beginning at $\tilde{F}_{i j}\left(\frac{i}{m}, \frac{j}{n}\right)=\tilde{F}_{i j+1}\left(\frac{i}{m}, \frac{j}{n}\right)$, we get

$$
\forall(s, t) \in\left[\frac{i-1}{m}, \frac{i}{m}\right] \times\left\{\frac{j}{n}\right\}, \tilde{F}_{i j}(s, t)=\tilde{F}_{i j+1}(s, t) .
$$

Hence, $\tilde{F}=\tilde{F}_{i j}$ on $\left[\frac{i-1}{m}, \frac{i}{m}\right] \times\left[\frac{j-1}{n}, \frac{j}{n}\right] \rightarrow X$, for every $(i, j) \in\{1, \ldots, m\} \times\{1, \ldots, n\}$, is the required lifting of F.

Corollary 8.13. Let X, Y be topological spaces, $p: X \rightarrow Y$ a covering map, and $(a, b) \in X \times Y$ such that $p(a)=b$. Consider two paths $f:[0,1] \rightarrow Y$ and $g:[0,1] \rightarrow Y$ beginning at b and ending c, and their respective liftings \tilde{f} and \tilde{g} beginning at a. The following conditions are equivalent:
(i) f and g are path homotopic,
(ii) $\tilde{f}(1)=\tilde{g}(1)$ and \tilde{f}, \tilde{g} are path homotopic.

Proof. $(i) \Rightarrow(i i):$ Consider a path homotopy $F:[0,1] \times[0,1] \rightarrow Y$ such that $F(0, t)=f(t), F(1, t)=$ $g(t), F(s, 0)=b$, and $F(s, 1)=c$. Let $\tilde{F}:[0,1] \times[0,1] \rightarrow X$ the lifting of F such that $\tilde{F}(0,0)=a$ described in Proposition 8.12. Path lifting uniqueness implies $\tilde{F}(0, t)=\tilde{f}(t)$ and $\tilde{F}(1, t)=\tilde{g}(t)$. Moreover, $\tilde{F}(s, 0)$ and $\tilde{F}(s, 1)$ are the liftings of e_{b} and e_{c} respectively, so must be constant. Consequently, $\tilde{f}(1)=\tilde{g}(1)$ and \tilde{F} is a path homotopy between \tilde{f} and \tilde{g}.
$(i i) \Rightarrow(i)$: If \tilde{f} and \tilde{g} are path homotopic with path homotopy \tilde{F}, then $p \circ \tilde{f}=f$ and $p \circ \tilde{g}=g$ are path homotopic with path homotopy $p \circ \tilde{F}$.

Definition 8.14. Let X, Y be topological spaces, and $p: X \rightarrow Y$ a covering map. Let $b \in Y$ and choose $a \in X$ so that $p(a)=b$. Given an element $[f]$ of $\pi_{1}(Y, b)$, let $\tilde{f}:[0,1] \rightarrow X$ be the lifting of f to a path in X that begins at a. Define the function

$$
\phi: \pi_{1}(Y, b) \rightarrow p^{-1}(b), \quad[f] \mapsto \tilde{f}(1)
$$

One calls ϕ the lifting correspondence derived from the covering map p and the origin a.
Proposition 8.15. Let X, Y be topological spaces, and $p: X \rightarrow Y$ a covering map. Let $b \in Y$ and choose $a \in X$ so that $p(a)=b$. If X is path connected, then the lifting correspondence

$$
\phi: \pi_{1}(Y, b) \rightarrow p^{-1}(b), \quad[f] \mapsto \tilde{f}(1)
$$

is surjective. If X is simply connected, then ϕ is bijective.
Proof. Let $a^{\prime} \in p^{-1}(b)$, and $\tilde{f}:[0,1] \rightarrow X$ a path from a to a^{\prime}. The path \tilde{f} is the lifting of $f=p \circ \tilde{f}$ which is a loop in Y at b, then $\phi([f])=a^{\prime}$, and ϕ is consequently surjective.
Suppose that X is simply connected. Take $[f],[g] \in \pi_{1}(Y, b)$ such that $\phi([f])=\phi([g])$. Let \tilde{f} and \tilde{g} be the liftings of f and g respectively that begin at a. Then $\tilde{f}(1)=\tilde{g}(1)$. The fact X is simply connected implies the existence of a path homotopy \tilde{F} between \tilde{f} and \tilde{g}. Then $p \circ \tilde{F}$ is path homotopy between f and g, that is $[f]=[g]$.

Theorem 8.16. The group $\pi_{1}\left(\mathbb{S}^{1},(1,0)\right)$ is isomorphic to the additive group $(\mathbb{Z},+)$.
Proof. Consider the covering map $p: \mathbb{R} \rightarrow \mathbb{S}^{1}$ given by $p(x)=(\cos 2 \pi x, \sin 2 \pi x)$. We have $p^{-1}((1,0))=$ \mathbb{Z}. Since \mathbb{R} is simply connected, we deduce from Proposition 8.15 that the lifting correspondence

$$
\phi: \pi_{1}\left(\mathbb{S}^{1},(1,0)\right) \rightarrow \mathbb{Z}, \quad[f] \mapsto \tilde{f}(1)
$$

is bijective. It remains to show that ϕ is a homeomorphism.
Given $[f],[g] \in \pi_{1}\left(\mathbb{S}^{1},(1,0)\right)$, let \tilde{f}, \tilde{g} be their respective liftings to paths in \mathbb{R} beginning at 0 . Denote $n=\tilde{f}(1)$ and $m=\tilde{g}(1)$. Define the path

$$
\tilde{\tilde{g}}:[0,1] \rightarrow \mathbb{R}, \quad t \mapsto n+\tilde{g}(t)
$$

Since $p \circ \tilde{\tilde{g}}(t)=p(n+\tilde{g}(t))=p(\tilde{g}(t))$, the path $\tilde{\tilde{g}}$ is then the lifting of g that begins at n. Then $\tilde{f} * \tilde{\tilde{g}}:[0,1] \rightarrow \mathbb{R}$ is defined, and is the lifting of $f * g$ that begins at 0 . As $\tilde{f} * \tilde{\tilde{g}}(1)=\tilde{\tilde{g}}(1)=n+m$, we obtain

$$
\phi([f] *[g])=n+m=\phi([f])+\phi([g]) .
$$

Chapter 9

Homotopy

9.1 Homotopy of Functions

Definition 9.1. Let X, Y be topological spaces, and f, g continuous functions from X into Y. One says that f is homotopic to g if there is a continuous function $F: X \times[0,1] \rightarrow Y$ such that

$$
\forall x \in X, \quad F(x, 0)=f(x) \quad \text { and } \quad F(x, 1)=g(x)
$$

In that case, one writes $f \simeq g$. The function F is called a homotopy between f and g.
Lemma 9.2. The relation \simeq on homotopic functions is an equivalence relation.
Proof. Given a function f, the function $F(x, t)=f(x)$ is the required homotopy to get $f \simeq f$. If $f \simeq g$ is got by a homotopy $F(x, t)$, then $G(x, t)=F(x, 1-t)$ is a homotopy between g and f.
Suppose that $f \simeq g$ by means of a homotopy F, and $g \simeq h$ by means of a homotopy G, then $f \simeq h$ by means of the homotopy $H: X \times[0,1] \rightarrow Y$ defined by the equation

$$
H(x, t)= \begin{cases}F(x, 2 t) & \text { if } t \in\left[0, \frac{1}{2}\right] \\ G(x, 2 t-1) & \text { if } t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Definition 9.3. Let X be a topological space, and $A \subseteq X$. A retraction of X onto A is a continuous function $r: X \rightarrow A$ such that the restriction $r: A \rightarrow A$ is the identity map of A. If such a function r exists, one says that A is a retract of X.

Definition 9.4. Let X be a topological space, and $A \subseteq X$. Suppose that there exists a continuous function $F: X \times[0,1] \rightarrow X$ such that

$$
\begin{aligned}
& \forall x \in X, \quad F(x, 0)=x \quad \text { and } \quad F(x, 1) \in A, \\
& \forall t \in[0,1], \forall a \in A, \quad F(a, t)=a .
\end{aligned}
$$

The homotopy F between the identity map $F(x, 0)$ of X and the retraction $F(x, 1)$ of X onto A is called a deformation retraction of X onto A, and A is called a deformation retract of X.

Proposition 9.5. Let X be a topological space, $A \subseteq X$, and $x \in A$. Consider the homomorphism $i_{*}: \pi_{1}(A, x) \rightarrow \pi_{1}(X, x)$ induced by the inclusion map $i: A \hookrightarrow X$.
(i) If A is a retract of X, then i_{*} is injective.
(ii) If A is a deformation retract of X, then i_{*} is bijective.

Proof. (i): If $r: X \rightarrow A$ is a retraction, then $r \circ i$ is the identity map of A. It follows that $(r \circ i)_{*}=r_{*} \circ i_{*}$ is the identity map of $\pi_{1}(A, x)$, which implies that i_{*} is injective.
(ii) : Suppose that $F: X \times[0,1] \rightarrow X$ is a deformation retraction of X onto A. Since $F(X, 1)=A$, then for any loop $f:[0,1] \rightarrow X$ based at $x, F(f(),.$.$) is a homotopy between f$ and a loop $F(f(), 1$. in A. Moreover, as $F(f(0), t)=F(f(1), t)=x$ for every $t \in[0,1]$, then $f \simeq_{p} F(f(), 1$.$) . Hence$ $[F(f(), 1)]=.[f]$, meaning that $[f]=i_{*}([F(f(), 1)]$.$) , and i_{*}$ is consequently surjective.
Example. There is no retraction of th real disc $\overline{B((0,0), 1)}$ onto \mathbb{S}^{1}. Suppose, indeed, that \mathbb{S}^{1} is a retract of $\overline{B((0,0), 1)}$. According to Proposition 9.5, the homomorphism $i_{*}: \pi_{1}\left(\mathbb{S}^{1},(1,0)\right) \rightarrow$ $\pi_{1}(\overline{B((0,0), 1)},(1,0))$ induced by the inclusion map $i: \mathbb{S}^{1} \hookrightarrow \overline{B((0,0), 1)}$ is injective. That is impossible, since $\pi_{1}\left(\mathbb{S}^{1},(1,0)\right) \cong \mathbb{Z}$ and $\pi_{1}(\overline{B((0,0), 1)},(1,0)) \cong 0$.

9.2 Homotopy Equivalence

Definition 9.6. Let X, Y be a topological spaces, and $f: X \rightarrow Y, g: Y \rightarrow X$ continuous functions. Suppose that $g \circ f: X \rightarrow X$ is homotopic to the identity map of X, and $f \circ g: Y \rightarrow Y$ to the identity map of Y. Then, the functions f and g are said to be homotopy equivalent, and each is called a homotopy inverse of the other.
Proposition 9.7. Let X, Y be topological spaces, and $F: X \times[0,1] \rightarrow Y$ a homotopy between continuous functions $f=F(., 0)$ and $g=F(., 1)$. Take $x \in X$, and consider the path $h=F(x,$.$) from f(x)$ to $g(x)$. Then, the following diagram is commutative:

Proof. Let $l:[0,1] \rightarrow X$ be a loop based at x. Consider the continuous function

$$
L:[0,1] \times[0,1] \rightarrow Y, \quad(s, t) \mapsto F(l(s), t)
$$

and the points $p_{1}=(0,0), p_{2}=(1,0), p_{3}=(0,1), p_{4}=(1,1)$. Denoting $L_{i j}$ the standard parametrisation of L restricted to the edge from p_{i} to p_{j}, where $i, j \in\{1,2,3,4\}$ and $i<j$, we get $L_{12} * L_{24} \simeq_{p}$ L_{14} and $L_{13} * L_{34} \simeq_{p} L_{14}$ by Lemma 7.16, hence $L_{12} * L_{24} \simeq_{p} L_{13} * L_{34}$. Remark that $L_{12}=f \circ l$, $L_{13}=L_{24}=h, L_{34}=g \circ l$, hence

$$
\begin{aligned}
f \circ l * h & =h * g \circ l \\
{[f \circ l] *[h] } & =[h] *[g \circ l] \\
{[\bar{h}] *[f \circ l] *[h] } & =[g \circ l] \\
\hat{h} \circ f_{*}([l]) & =g_{*}([l]) .
\end{aligned}
$$

Corollary 9.8. Let X be a topological space, and $f: X \rightarrow X$ a continuous function that is homotopic to the identity map of X. Then, for any $x \in X$, the function $f_{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(X, f(x))$ is a group isomorphism.

Proof. Let $F: X \times[0,1] \rightarrow X$ be a homotopy between the identity map $F(., 0)=i$ of X and $F(., 1)=f$, and consider the path $h=F(x,$.$) from x$ to $f(x)$. Proposition 9.7 implies that $f_{*}=\hat{h} \circ i_{*}=\hat{h}$, which is a isomorphism from $\pi_{1}(X, x)$ to $\pi_{1}(X, f(x))$ by Proposition 7.11 .

Lemma 9.9. Let A, B, C, D be sets, and f, g, h functions represented by the following diagram:

$$
A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D .
$$

If $g \circ f$ is bijective and $h \circ g$ is injective, then f is bijective.
Proof. As $g \circ f$ is injective, then f is injective.
Take $b \in B$. As $g \circ f$ is surjective, there exists $a \in A$ such that $g \circ f(a)=g(b)$. Remark that g is also injective since $h \circ g$ is injective. The injectivity of g implies $f(a)=b$, hence h is surjective.

Theorem 9.10. Let X, Y be topological spaces, $x \in X$, and $f: X \rightarrow Y$ a continuous function. If there exists a continuous function $g: Y \rightarrow X$ homotopy equivalent to f, then $f_{*}: \pi_{1}(X, x) \rightarrow \pi_{1}(Y, f(x))$ is an isomorphism.

Proof. Consider the following sequence of homomorphisms:

$$
\pi_{1}(X, x) \xrightarrow{f_{*}} \pi_{1}(Y, f(x)) \xrightarrow{g_{*}} \pi_{1}(X, g \circ f(x)) \xrightarrow{f_{*}} \pi_{1}(Y, f \circ g \circ f(x)) .
$$

We know from Corollary 9.8 that $g_{*} \circ f_{*}$ and $f_{*} \circ g_{*}$ are isomorphisms. Morevore, we can deduce from Lemma 9.9 that f_{*} is bijective.

Chapter 10

Singular Homology

10.1 Singular Homology

Proposition 10.1. Let $u_{0}, u_{1}, \ldots, u_{p} \in \mathbb{R}^{n}$. The following conditions are equivalent:
(i) the p vectors $\overrightarrow{u_{0} u_{1}}, \overrightarrow{u_{0} u_{2}}, \ldots \overrightarrow{u_{0} u_{p}}$ are linearly independent,
(ii) if $s_{0}, s_{1}, \ldots, s_{p}, t_{0}, t_{1}, \ldots, t_{p} \in \mathbb{R}$ such that

$$
\sum_{i=0}^{p} s_{i} u_{i}=\sum_{i=0}^{p} t_{i} u_{i} \quad \text { and } \quad \sum_{i=0}^{p} s_{i}=\sum_{i=0}^{p} t_{i},
$$

then $s_{i}=t_{i}$ for $i \in\{0,1, \ldots, p\}$.
Proof. (i) $\Rightarrow(i i)$: If $\sum_{i=0}^{p} s_{i} u_{i}=\sum_{i=0}^{p} t_{i} u_{i}$ and $\sum_{i=0}^{p} s_{i}=\sum_{i=0}^{p} t_{i}$, then

$$
\begin{aligned}
0 & =\sum_{i=0}^{p}\left(s_{i}-t_{i}\right) u_{i} \\
& =\sum_{i=0}^{p}\left(s_{i}-t_{i}\right) u_{i}-\left(\sum_{i=0}^{p}\left(s_{i}-t_{i}\right)\right) u_{0} \\
& =\sum_{i=1}^{p}\left(s_{i}-t_{i}\right)\left(u_{i}-u_{0}\right) .
\end{aligned}
$$

As $\overrightarrow{u_{0} u_{1}}, \overrightarrow{u_{0} u_{2}}, \ldots \overrightarrow{u_{0} u_{p}}$ are linearly independent, it follows that $s_{i}=t_{i}$ for $i \in\{1, \ldots, p\}$. Moreover, $\sum_{i=0}^{p} s_{i}=\sum_{i=0}^{p} t_{i}$ implies $s_{0}=t_{0}$.
(ii) $\Rightarrow(i)$: If $\sum_{i=1}^{p} t_{i}\left(u_{i}-u_{0}\right)=0$, then $\sum_{i=1}^{p} t_{i} u_{i}=\left(\sum_{i=1}^{p} t_{i}\right) u_{0}$. Hence, we must have $t_{1}=\cdots=t_{n}=0$.

Definition 10.2. Let $n \in \mathbb{N}, p \in\{1, \ldots, n\}$, and $u_{0}, u_{1}, \ldots, u_{p} \in \mathbb{R}^{n}$. A p-simplex $\left[u_{0}, u_{1}, \ldots, u_{p}\right]$ is a convex hull

$$
\left\{t_{0} u_{0}+t_{1} u_{1}+\cdots+t_{p} u_{p} \mid t_{0}, t_{1}, \ldots, t_{p} \in \mathbb{R}_{+}, \sum_{i=0}^{p} t_{i}=1\right\}
$$

with ordered vertices $u_{0}, u_{1}, \ldots, u_{p}$ such that the p vectors $\overrightarrow{u_{0} u_{1}}, \overrightarrow{u_{0} u_{2}}, \ldots \overrightarrow{u_{0} u_{p}}$ are linearly independent.

Corollary 10.3. If $\left[u_{0}, u_{1}, \ldots, u_{p}\right]$ is a p-simplex in \mathbb{R}^{n}, then every point of $\left[u_{0}, u_{1}, \ldots, u_{p}\right]$ has a distinct unique representation in the form $\sum_{i=0}^{p} t_{i} u_{i}$, with $t_{0}, t_{1}, \ldots, t_{p} \in \mathbb{R}_{+}$and $\sum_{i=0}^{p} t_{i}=1$.
Proof. It is Proposition 10.1 with the conditions $t_{0}, t_{1}, \ldots, t_{p} \in \mathbb{R}_{+}$and $\sum_{i=0}^{p} t_{i}=1$.
Example. The standard n-simplex is convex hull

$$
\Delta^{n}:=\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid t_{0}, t_{1}, \ldots, t_{p} \in \mathbb{R}_{+}, \sum_{i=0}^{n} t_{i}=1\right\}=\left[e_{0}, e_{1}, \ldots, e_{n}\right]
$$

of the ordered vertices $e_{0}=(0, \ldots, 0), e_{1}=(1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$.
Definition 10.4. Let X be a topological space. A singular n-simplex in X is a continuous function

$$
\sigma: \Delta^{n} \rightarrow X
$$

Denote $S_{n}(X)$ the set of singular n-simplices in X. Let $C_{n}(X)$ be the free abelian group with basis $S_{n}(X)$, that is,

$$
C_{n}(X):=\left\{\sum_{a \in A} n_{a} \sigma_{a} \mid \# A \in \mathbb{N}, n_{a} \in \mathbb{Z}, \sigma_{a} \in S_{n}(X)\right\} .
$$

Elements of $C_{n}(X)$ are called singular n-chains.
Definition 10.5. Let X be a topological space, and $i \in\{0,1, \ldots, n\}$. The $i^{\text {th }}$ face operator is the homomorphism

$$
\partial_{i}: C_{n}(X) \rightarrow C_{n-1}(X), \quad \sum_{a \in A} n_{a} \sigma_{a} \mapsto \sum_{a \in A} n_{a} \sigma_{a} \mid\left[e_{0}, e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right],
$$

where $\left[e_{0}, e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]$ is the $n-1$-simplex with vertices $e_{0}, \ldots, e_{i-1}, e_{i+1}, \ldots, e_{n}$. The boundary operator is the homomorphism

$$
\partial: C_{n}(X) \rightarrow C_{n-1}(X), \quad \sigma \mapsto \sum_{i=0}^{n}(-1)^{i} \partial_{i}(\sigma)
$$

Proposition 10.6. Let X be a topological space. The following composition is zero:

$$
C_{n}(X) \xrightarrow{\partial} C_{n-1}(X) \xrightarrow{\partial} C_{n-2}(X) .
$$

Proof. For $\sigma \in C_{n}(X)$, we have $\partial(\sigma)=\sum_{i=0}^{n}(-1)^{i} \sigma \mid\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]$. Remark that $\partial \sigma\left|\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]=\sum_{j=0}^{i-1}(-1)^{j} \sigma\right|\left[e_{0}, \ldots, \hat{e}_{j}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]+\sum_{j=i+1}^{n}(-1)^{j-1} \sigma \mid\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, \hat{e}_{j}, \ldots, e_{n}\right]$.
Then,

$$
\begin{aligned}
\partial \circ \partial(\sigma) & =\sum_{i=0}^{n} \sum_{j=0}^{i-1}(-1)^{i+j} \sigma\left|\left[e_{0}, \ldots, \hat{e}_{j}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]+\sum_{i=0}^{n} \sum_{j=i+1}^{n}(-1)^{i+j-1} \sigma\right|\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, \hat{e}_{j}, \ldots, e_{n}\right] \\
& =\sum_{i, j \in\{0, \ldots, n\}}(-1)^{i+j} \sigma\left|\left[e_{0}, \ldots, \hat{e}_{j}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]+\sum_{\substack{i, j \in\{0, \ldots, n\} \\
i<j}}(-1)^{i+j-1} \sigma\right|\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, \hat{e}_{j}, \ldots, e_{n}\right] \\
& =0 .
\end{aligned}
$$

Definition 10.7. Let X be a topological space. The singular complex $C_{\bullet}(X)$ of X is the homomorphism sequence

$$
\cdots \xrightarrow{\partial} C_{n+1}(X) \xrightarrow{\partial} C_{n}(X) \xrightarrow{\partial} C_{n-1}(X) \xrightarrow{\partial} \cdots \xrightarrow{\partial} C_{1}(X) \xrightarrow{\partial} C_{0}(X) \xrightarrow{\partial} 0 .
$$

The group of singular n-cycles of X is $Z_{n}(X):=\left\{\sigma \in C_{n}(X) \mid \partial(\sigma)=0\right\}$. The group of singular n-boundaries of X is $B_{n}(X):=\left\{\sigma \in C_{n}(X) \mid \exists \tau \in C_{n+1}(X), \partial(\tau)=\sigma\right\}$. The quotient group

$$
H_{n}(X)=Z_{n}(X) / B_{n}(X)
$$

is the $n^{\text {th }}$ singular homology group of X.
Example. If x is a point, then $H_{0}(\{x\}) \cong \mathbb{Z}$, and $H_{n}(\{x\})=0$ for $n \in \mathbb{N}$. Indeed, for every nonnegative integer $n, C_{n}(\{x\})=\mathbb{Z}\{\sigma\}$, where $\sigma: \Delta^{n} \rightarrow\{x\}, t \mapsto x$. Moreover, for every $z \sigma \in C_{n}(\{x\})$,

$$
\partial(z \sigma)=\sum_{i=0}^{n}(-1)^{i} \partial_{i}(z \sigma)=\sum_{i=0}^{n}(-1)^{i} z \sigma= \begin{cases}z \sigma & \text { if } n \text { is even and } n \neq 0, \\ 0 & \text { if } n \text { is odd. }\end{cases}
$$

The singular complex of $\{x\}$ is then

$$
\cdots \xrightarrow{0} \mathbb{Z}\{\sigma\} \xrightarrow{\text { restriction }} \mathbb{Z}\{\sigma\} \xrightarrow{0} \mathbb{Z}\{\sigma\} \xrightarrow{\text { restriction }} \mathbb{Z}\{\sigma\} \xrightarrow{0} \mathbb{Z}\{\sigma\} \xrightarrow{0} 0 .
$$

Hence,

- $Z_{0}(\{x\})=\mathbb{Z}\{\sigma\}$ and $B_{0}(\{x\})=\{0\}$, implying $H_{0}(\{x\})=\mathbb{Z}\{\sigma\} /\{0\} \cong \mathbb{Z}$,
- if n is even and $n \neq 0, Z_{n}(\{x\})=\{0\}$ and $B_{n}(\{x\})=\{0\}$, then $H_{n}(\{x\})=\{0\} /\{0\}=\{0\}$,
- if n is odd, $Z_{n}(\{x\})=\mathbb{Z}\{\sigma\}$ and $B_{n}(\{x\})=\mathbb{Z}\{\sigma\}$, then $H_{n}(\{x\})=\mathbb{Z}\{\sigma\} / \mathbb{Z}\{\sigma\} \cong\{0\}$.

Proposition 10.8. Let X be a topological space. Suppose that $X=\bigsqcup_{i \in I} X_{i}$, where X_{i} is a path component. Then,

$$
H_{n}(X) \cong \bigoplus_{i \in I} H_{n}\left(X_{i}\right) .
$$

Proof. Let σ be a singular n-simplex in X. Since Δ^{n} is path connected, then $\sigma\left(\Delta^{n}\right)$ is path connected, meaning that $\sigma\left(\Delta^{n}\right) \subseteq X_{i}$ for some $i \in I$. Then $C_{n}(X)=\bigoplus_{i \in I} C_{n}\left(X_{i}\right)$. Moreover, $\partial\left(C_{n}\left(X_{i}\right)\right) \subseteq$ $C_{n-1}\left(X_{i}\right)$, hence $Z_{n}(X)=\bigoplus_{i \in I} Z_{n}\left(X_{i}\right)$ and $B_{n}(X)=\bigoplus_{i \in I} B_{n}\left(X_{i}\right)$. Consider the natural homomorphism $p: \bigoplus_{i \in I} Z_{n}\left(X_{i}\right) \mapsto \bigoplus_{i \in I} Z_{n}\left(X_{i}\right) / B_{n}\left(X_{i}\right),\left(\sigma_{i}\right)_{i \in I} \mapsto\left(\dot{\sigma}_{i}\right)_{i \in I}$ which the canonical projection on each coordinate. It is obviously surjective, and $\operatorname{ker} p=\bigoplus_{i \in I} B_{n}\left(X_{i}\right)$. Therefore

$$
H_{n}(X)=\bigoplus_{i \in I} Z_{n}\left(X_{i}\right) / \bigoplus_{i \in I} B_{n}\left(X_{i}\right) \cong \bigoplus_{i \in I} Z_{n}\left(X_{i}\right) / B_{n}\left(X_{i}\right)=\bigoplus_{i \in I} H_{n}\left(X_{i}\right) .
$$

Proposition 10.9. Let X be a topological space. Suppose that $X=\bigsqcup_{i \in I} X_{i}$, where X_{i} is a path component. Then,

$$
H_{0}(X) \cong \overbrace{\cdots \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots}^{\text {\#I times }}
$$

Proof. Define a homomorphism $h: C_{0}\left(X_{i}\right) \rightarrow \mathbb{Z}, \sum_{j \in J} n_{j} \sigma_{j} \mapsto \sum_{j \in J} n_{j}$. It is obviously surjective as X_{i} is assumed to be nonempty. For every $\sigma \in S_{1}\left(X_{i}\right)$, we have $h \circ \partial(\sigma)=h\left(\sigma\left|\left[e_{1}\right]-\sigma\right|\left[e_{0}\right]\right)=1-1=0$. It follows that $\left\{\tau \in C_{0}\left(X_{i}\right) \mid \exists \sigma \in C_{1}\left(X_{i}\right), \partial(\sigma)=\tau\right\}=B_{0}\left(X_{i}\right) \subseteq$ ker h.
Now, let $\sum_{j \in J} n_{j} \sigma_{j} \in C_{0}\left(X_{i}\right)$ such that $h\left(\sum_{j \in J} n_{j} \sigma_{j}\right)=0$. Take a point $x \in X_{i}$ and note that, for each $j \in J$, there exists a singular 1-simplex $\tau_{j}:\left[e_{0}, e_{1}\right] \rightarrow X_{i}$ such that $\tau_{j}\left(e_{0}\right)=\sigma\left(e_{0}\right)$ and $\tau_{j}\left(e_{1}\right)=x$. We have

$$
\partial\left(\sum_{j \in J} n_{j} \tau_{j}\right)=\sum_{j \in J} n_{j} \sigma_{j}-\left(\sum_{j \in J} n_{j}\right) \phi=\sum_{j \in J} n_{j} \sigma_{j} \quad \text { with } \quad \phi:\left[e_{0}\right] \rightarrow X_{i}, e_{0} \mapsto x
$$

Hence ker $h \subseteq\left\{\sigma \in C_{0}\left(X_{i}\right) \mid \exists \tau \in C_{1}\left(X_{i}\right), \partial(\tau)=\sigma\right\}=B_{0}\left(X_{i}\right)$.
We deduce that $B_{0}\left(X_{i}\right)=\operatorname{ker} h$. Therefore

$$
H_{0}\left(X_{i}\right)=Z_{0}\left(X_{i}\right) / B_{0}\left(X_{i}\right)=C_{0}\left(X_{i}\right) / \operatorname{ker} h \cong h\left(C_{0}\left(X_{i}\right)\right)=\mathbb{Z}
$$

Finally, we get $H_{0}(X) \cong \overbrace{\cdots \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots}^{\# I \text { times }}$ by Proposition 10.8 .

10.2 Homotopy Invariance

Definition 10.10. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a continuous function. The homomorphism induced on singular n-chains by f is

$$
f_{\sharp}: C_{n}(X) \rightarrow C_{n}(Y), \quad \sum_{a \in A} n_{a} \sigma_{a} \mapsto \sum_{a \in A} n_{a} f \circ \sigma_{a} .
$$

Lemma 10.11. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a continuous function. The following diagram is commutative:

Proof. Let $\sigma \in C_{n}(X)$. We have

$$
\begin{aligned}
f_{\sharp} \circ \partial(\sigma) & =f_{\sharp}\left(\sum_{i=0}^{n}(-1)^{i} \sigma \mid\left[e_{0}, e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]\right) \\
& =\sum_{i=0}^{n}(-1)^{i} f_{\sharp} \circ \sigma \mid\left[e_{0}, e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right] \\
& =\partial\left(f_{\sharp} \circ \sigma\right) .
\end{aligned}
$$

Proposition 10.12. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a continuous function. Then, f_{\sharp} induces a homomorphism

$$
f_{\star}: H_{n}(X) \rightarrow H_{n}(Y), \quad \sigma+B_{n}(X) \mapsto f_{\sharp}(\sigma)+B_{n}(Y) .
$$

Proof. Using Lemma 10.11 .

- If $\sigma \in Z_{n}(X)$, then $\partial\left(f_{\sharp}(\sigma)\right)=f_{\sharp}(\partial(\sigma))=f_{\sharp}(0)=0$, so $f_{\sharp}\left(Z_{n}(X)\right) \subseteq Z_{n}(Y)$,
- if $\sigma \in C_{n+1}(X)$, then $f_{\sharp}(\partial(\sigma))=\partial\left(f_{\sharp}(\sigma)\right)$, so $f_{\sharp}\left(B_{n}(X)\right) \subseteq B_{n}(Y)$.

Hence, for every $\sigma+B_{n}(X) \in H_{n}(X), f_{\star}\left(\sigma+B_{n}(X)\right)=f_{\sharp}(\sigma)+B_{n}(Y) \in H_{n}(Y)$ is well-defined. And $f_{\star}\left(\sigma+\tau+B_{n}(X)\right)=f_{\sharp}(\sigma+\tau)+B_{n}(Y)=f_{\sharp}(\sigma)+f_{\sharp}(\tau)+B_{n}(Y)=f_{\star}\left(\sigma+B_{n}(X)\right)+f_{\star}\left(\tau+B_{n}(X)\right)$.

Definition 10.13. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a continuous function. The homomorphism induced on homology groups by f is

$$
f_{\star}: H_{n}(X) \rightarrow H_{n}(Y), \quad \sigma+B_{n}(X) \mapsto f_{\sharp}(\sigma)+B_{n}(Y) .
$$

Proposition 10.14. Let X, Y, Z be topological spaces, and $f: X \rightarrow Y, g: Y \rightarrow Z$ continuous functions. In particular, let $i_{X}: X \rightarrow X$ and $i: H_{n}(X) \rightarrow H_{n}(X)$ be the identity maps of X and $H_{n}(X)$ respectively. Then,
(i) $(g \circ f)_{\star}=g_{\star} \circ f_{\star}$,
(ii) $\left(i_{X}\right)_{\star}=i$.

Proof. (i): If $\sum_{a \in A} n_{a} \sigma_{a} \in C_{n}(X)$, we have

$$
g_{\sharp} \circ f_{\sharp}\left(\sum_{a \in A} n_{a} \sigma_{a}\right)=g_{\sharp}\left(\sum_{a \in A} n_{a} f \circ \sigma_{a}\right)=\sum_{a \in A} n_{a} g \circ f \circ \sigma_{a}=(g \circ f)_{\sharp}\left(\sum_{a \in A} n_{a} \sigma_{a}\right) .
$$

Hence, if $\sigma+B_{n}(X) \in H_{n}(X)$,

$$
\begin{aligned}
g_{\star} \circ f_{\star}\left(\sigma+B_{n}(X)\right) & =g_{\star}\left(f_{\sharp}(\sigma)+B_{n}(Y)\right) \\
& =g_{\sharp} \circ f_{\sharp}(\sigma)+B_{n}(Z) \\
& =(g \circ f)_{\sharp}(\sigma)+B_{n}(Z) \\
& =(g \circ f)_{\star}\left(\sigma+B_{n}(X)\right) .
\end{aligned}
$$

(ii): For $\sigma+B_{n}(X) \in H_{n}(X),\left(i_{X}\right)_{\star}\left(\sigma+B_{n}(X)\right)=\left(i_{X}\right)_{\sharp}(\sigma)+B_{n}(X)=\sigma+B_{n}(X)$.

For a nonnegative integer n, set $\Delta^{n} \times\{0\}:=\left[e_{0}^{0}, e_{1}^{0}, \ldots, e_{n}^{0}\right]$ and $\Delta^{n} \times\{1\}:=\left[e_{0}^{1}, e_{1}^{1}, \ldots, e_{n}^{1}\right]$ such that e_{i}^{0} and e_{i}^{1} have the same image e_{i} under the projection $\Delta^{n} \times\{0,1\} \rightarrow \Delta^{n}$, where $i \in\{0,1, \ldots, n\}$.

Proposition 10.15. Let n be a nonnegative integer. Then

$$
\Delta^{n} \times[0,1]=\bigcup_{i=0}^{n}\left[e_{0}^{0}, \ldots, e_{i-1}^{0}, e_{i}^{0}, e_{i}^{1}, e_{i+1}^{1}, \ldots, e_{n}^{1}\right]
$$

Proof. Let $u=\sum_{j=0}^{i} t_{j}^{0} e_{j}^{0}+\sum_{j=i}^{n} t_{j}^{1} e_{j}^{1} \in\left[e_{0}^{0}, \ldots, e_{i-1}^{0}, e_{i}^{0}, e_{i}^{1}, e_{i+1}^{1}, \ldots, e_{n}^{1}\right]$. If $u=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n+1}\right)$, then

$$
\sum_{k=0}^{n} \lambda_{k}=\sum_{j=0}^{i} t_{j}^{0}+\sum_{j=i}^{n} t_{j}^{1}=1 \quad \text { and } \quad \lambda_{n+1}=\sum_{j=i}^{n} t_{j}^{1} \in[0,1] .
$$

Hence $\left[e_{0}^{0}, \ldots, e_{i-1}^{0}, e_{i}^{0}, e_{i}^{1}, e_{i+1}^{1}, \ldots, e_{n}^{1}\right] \subseteq \Delta^{n} \times[0,1]$.
Now, take $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n+1}\right) \in \Delta^{n} \times[0,1]$. Let $i=\max \left\{j \in\{0,1, \ldots, n\} \mid \sum_{j=i}^{n} \lambda_{j} \geq \lambda_{n+1}\right\}$. Then,

$$
\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n+1}\right)=\sum_{j=0}^{i-1} \lambda_{j} e_{j}^{0}+\left(\lambda_{i}-\lambda_{n+1}+\sum_{j=i}^{n} \lambda_{j}\right) e_{i}^{0}+\left(\lambda_{n+1}-\sum_{j=i}^{n} \lambda_{j}\right) e_{i}^{1}+\sum_{j=i+1}^{n} \lambda_{j} e_{j}^{1}
$$

which belongs to $\left[e_{0}^{0}, \ldots, e_{i}^{0}, e_{i}^{1}, \ldots, e_{n}^{1}\right]$. Hence $\Delta^{n} \times[0,1] \subseteq \bigcup_{i=0}^{n}\left[e_{0}^{0}, \ldots, e_{i}^{0}, e_{i}^{1}, \ldots, e_{n}^{1}\right]$.
Definition 10.16. Let X, Y be topological spaces, id : $[0,1] \rightarrow[0,1]$ the identity map, and $F: X \times$ $[0,1] \rightarrow Y$ a continuous function. The composition $F \circ(\sigma \times i d): \Delta^{n} \times[0,1] \rightarrow X \times[0,1] \rightarrow Y$ is well-defined and the prism operator of F is the function

$$
P: C_{n}(X) \rightarrow C_{n+1}(Y), \quad \sigma \mapsto \sum_{i=0}^{n}(-1)^{i} F \circ(\sigma \times i d) \mid\left[e_{0}^{0}, \ldots, e_{i-1}^{0}, e_{i}^{0}, e_{i}^{1}, e_{i+1}^{1}, \ldots, e_{n}^{1}\right] .
$$

Proposition 10.17. Let X, Y be topological spaces, $f: X \rightarrow Y, g: X \rightarrow Y$ continuous functions, and $F: X \times[0,1] \rightarrow Y$ a homotopy between f and g. Then,

$$
\partial \circ P=g_{\sharp}-f_{\sharp}-P \circ \partial .
$$

Proof. Denote

$$
F_{i, j}^{0}=F \circ(\sigma \times i d) \mid\left[e_{0}^{0}, \ldots, \widehat{e_{j}^{0}}, \ldots, e_{i}^{0}, e_{i}^{1}, \ldots, e_{n}^{1}\right] \text { and } F_{i, j}^{1}=F \circ(\sigma \times i d) \mid\left[e_{0}^{0}, \ldots, e_{i}^{0}, e_{i}^{1}, \ldots, \widehat{e_{j}^{1}}, \ldots, e_{n}^{1}\right] .
$$

We have

$$
\begin{aligned}
\partial \circ P(\sigma) & =\partial\left(\sum_{i=0}^{n}(-1)^{i} F \circ(\sigma \times i d) \mid\left[e_{0}^{0}, \ldots, e_{i-1}^{0}, e_{i}^{0}, e_{i}^{1}, e_{i+1}^{1}, \ldots, e_{n}^{1}\right]\right) \\
& =\sum_{i=0}^{n}(-1)^{i} \partial\left(F \circ(\sigma \times i d) \mid\left[e_{0}^{0}, \ldots, e_{i-1}^{0}, e_{i}^{0}, e_{i}^{1}, e_{i+1}^{1}, \ldots, e_{n}^{1}\right]\right) \\
& =\sum_{i=0}^{n}(-1)^{i}\left(\sum_{j=0}^{i}(-1)^{j} F_{i, j}^{0}+\sum_{j=i}^{n}(-1)^{j+1} F_{i, j}^{1}\right) \\
& =\sum_{i=0}^{n} \sum_{j=0}^{i}(-1)^{i+j} F_{i, j}^{0}+\sum_{i=0}^{n} \sum_{j=i}^{n}(-1)^{i+j+1} F_{i, j}^{1}
\end{aligned}
$$

Remark that $\left[e_{0}^{0}, \ldots, e_{i}^{0}, \widehat{e_{i}^{1}}, e_{i+1}^{1}, \ldots, e_{n}^{1}\right]=\left[e_{0}^{0}, \ldots, e_{i}^{0}, \widehat{e_{i+1}^{0}}, e_{i+1}^{1}, \ldots, e_{n}^{1}\right]$, which implies $F_{i, i}^{1}=F_{i+1, i+1}^{0}$. Hence

$$
\partial \circ P(\sigma)=F_{0,0}^{0}+\sum_{i=0}^{n} \sum_{j=0}^{i-1}(-1)^{i+j} F_{i, j}^{0}+\sum_{i=0}^{n} \sum_{j=i+1}^{n}(-1)^{i+j+1} F_{i, j}^{1}-F_{n, n}^{1} .
$$

Note that $F_{0,0}^{0}=F \circ(\sigma \times i d) \mid\left[\widehat{e_{0}^{0}}, e_{0}^{1}, e_{1}^{1}, \ldots, e_{n}^{1}\right]=g_{\sharp}$ and $F_{n, n}^{1}=F \circ(\sigma \times i) \mid\left[e_{0}^{0}, \ldots, e_{n-1}^{0}, e_{n}^{0}, \widehat{e_{n}^{1}}\right]=f_{\sharp}$.
Moreover,

$$
\begin{aligned}
P \circ \partial(\sigma) & =P\left(\sum_{i=0}^{n}(-1)^{i} \sigma \mid\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]\right) \\
& =\sum_{i=0}^{n}(-1)^{i} \sum_{j=i+1}^{n}(-1)^{j} F_{i, j}^{1}+\sum_{i=0}^{n}(-1)^{i-1} \sum_{j=0}^{i-1}(-1)^{j} F_{i, j}^{0} \\
& =\sum_{i=0}^{n} \sum_{j=0}^{i-1}(-1)^{i+j-1} F_{i, j}^{0}+\sum_{i=0}^{n} \sum_{j=i+1}^{n}(-1)^{i+j} F_{i, j}^{1} .
\end{aligned}
$$

Therefore $\partial \circ P=g_{\sharp}-P \circ \partial-f_{\sharp}$.
Theorem 10.18. Let X, Y be topological spaces, and $f: X \rightarrow Y, g: X \rightarrow Y$ continuous functions. If f and g are homotopic, then $f_{\star}=g_{\star}$.

Proof. Let P be the prism operator of a homotopy between f and g. If $\sigma \in Z_{n}(X)$, we then know from Proposition 10.17 that $g_{\sharp}(\sigma)-f_{\sharp}(\sigma)=\partial \circ P(\sigma)+P \circ \partial(\sigma)=\partial \circ P(\sigma)$, since $\partial(\sigma)=0$. Thus $g_{\sharp}(\sigma)-f_{\sharp}(\sigma) \in B_{n}(Y)$, meaning that $g_{\sharp}(\sigma)+B_{n}(Y)=f_{\sharp}(\sigma)+B_{n}(Y)$. So, for all $\sigma+B_{n}(X) \in H_{n}(X)$,

$$
g_{\star}\left(\sigma+B_{n}(X)\right)=g_{\sharp}(\sigma)+B_{n}(Y)=f_{\sharp}(\sigma)+B_{n}(Y)=f_{\star}\left(\sigma+B_{n}(X)\right) .
$$

Corollary 10.19. Let X, Y be topological spaces, and $f: X \rightarrow Y$ a continuous function. If f is homotopy equivalent some function, then $f_{\star}: H_{n}(X) \rightarrow H_{n}(Y)$ is an isomorphism.

Proof. Let $g: Y \rightarrow X$ be a function homotopy equivalent to f. Moreover, let $i_{X}, i_{Y}, i_{H_{n}(X)}, i_{H_{n}(Y)}$ be the identity maps of $X, Y, H_{n}(X), H_{n}(Y)$ respectively. Using Proposition 10.14 and Theorem 10.18, we get

- $g_{\star} \circ f_{\star}=(g \circ f)_{\star}=\left(i_{X}\right)_{\star}=i_{H_{n}(X)}$,
- $f_{\star} \circ g_{\star}=(f \circ g)_{\star}=\left(i_{Y}\right)_{\star}=i_{H_{n}(Y)}$.

Hence, $g_{\star}=f_{\star}^{-1}$, which implies that f_{\star} is an isomorphism.
Example. If X is a convex set in \mathbb{R}^{n}, then $H_{0}(X) \cong \mathbb{Z}$, and $H_{n}(X)=0$ for $n \in \mathbb{N}$. Indeed, if $a \in X$, the function

$$
F: X \times[0,1] \rightarrow X, \quad(x, t) \mapsto t a+(1-t) x
$$

is a deformation retraction of X onto $\{a\}$. Consider both functions

$$
f: X \rightarrow\{a\}, x \mapsto a \quad \text { and } g:\{a\} \rightarrow X, x \rightarrow x .
$$

Denoting $i_{X}, i_{\{a\}}$ the identity maps of X and $\{a\}$ respectively, we see that

- $g \circ f=f$ which is homotopic to i_{X} by the deformation retraction F,
- $f \circ g=i_{\{a\}}$.

Hence, f and g are homotopy equivalent. We deduce from Corollary 10.19 that $f_{\star}: H_{n}(X) \rightarrow H_{n}(\{a\})$ is an isomorphism.

10.3 Relative Homology Groups

Definition 10.20. Let X be a topological space, and $A \subseteq X$. The free abelian subgroup $C_{n}(A)$ is

$$
C_{n}(A):=\left\{\sum_{i \in I} n_{i} \sigma_{i} \in C_{n}(X) \mid \sigma_{i}\left(\Delta^{n}\right) \subseteq A\right\}
$$

The relative n-chains are the elements of the quotient group $C_{n}(X, A):=C_{n}(X) / C_{n}(A)$.
Lemma 10.21. Let X be a topological space, and $A \subseteq X$. The boundary operator $\partial: C_{n}(X) \rightarrow$ $C_{n-1}(X)$ induces the quotient boundary operator

$$
\dot{\partial}: C_{n}(X, A) \rightarrow C_{n-1}(X, A), \quad \sigma+C_{n}(A) \mapsto \dot{\partial}(\sigma)+C_{n-1}(A)
$$

Proof. Let $\tau=\sum_{i \in I} n_{i} \tau_{i} \in C_{n}(A)$ and $j \in\{0,1, \ldots, n\}$. Since $\tau_{i} \mid\left[e_{0}, e_{1}, \ldots, \hat{e}_{j}, \ldots, e_{n}\right]\left(\Delta^{n-1}\right) \subseteq A$, then $\partial(\tau) \in C_{n-1}(A)$. Hence $\partial\left(C_{n}(A)\right) \subseteq C_{n-1}(A)$, and $\dot{\partial}: C_{n}(X, A) \rightarrow C_{n-1}(X, A)$ is well-defined.

Definition 10.22. Let X be a topological space, and $A \subseteq X$. The relative complex $C_{\bullet}(X, A)$ of X relative to A is

$$
\cdots \xrightarrow{\dot{\partial}} C_{n+1}(X, A) \xrightarrow{\dot{\partial}} C_{n}(X, A) \xrightarrow{\dot{\partial}} C_{n-1}(X, A) \xrightarrow{\dot{\partial}} \cdots \xrightarrow{\dot{\partial}} C_{1}(X, A) \xrightarrow{\dot{\partial}} C_{0}(X, A) \xrightarrow{\dot{\partial}} 0 .
$$

The group of relative n-cycles of X relative to A is

$$
Z_{n}(X, A):=\left\{\sigma+C_{n}(A) \in C_{n}(X, A) \mid \partial(\sigma) \in C_{n-1}(A)\right\}
$$

The group of relative n-boundaries of X relative to A is

$$
B_{n}(X, A):=\left\{\sigma+C_{n}(A) \in C_{n}(X, A) \mid \exists \tau \in C_{n+1}(X), v \in C_{n}(A), \partial(\tau)=\sigma+v\right\}
$$

The quotient group

$$
H_{n}(X, A)=Z_{n}(X, A) / B_{n}(X, A)
$$

is the $n^{\text {th }}$ relative homology group of X relative to A.
Denote $f:(X, A) \rightarrow(Y, B)$ a function $f: X \rightarrow Y$ such that $A \subseteq X, B \subseteq Y$, and $f(A) \subseteq B$.
Lemma 10.23. Let X, Y be topological spaces, $A \subseteq X, B \subseteq Y$, and $f:(X, A) \rightarrow(Y, B)$ a continuous function. The homomorphism $f_{\sharp}: C_{n}(X) \rightarrow C_{n}(Y)$ induces the homomorphism on relative n-chains

$$
\dot{f}_{\sharp}: C_{n}(X, A) \rightarrow C_{n}(Y, B), \quad \sigma+C_{n}(A) \mapsto f_{\sharp}(\sigma)+C_{n}(B) .
$$

Proof. If $\sum_{i \in I} n_{i} \sigma_{i} \in C_{n}(A)$, then $f_{\sharp}\left(\sum_{i \in I} n_{i} \sigma_{i}\right)=\sum_{i \in I} n_{i} f \circ \sigma_{i} \in C_{n}(B)$. Hence $f_{\sharp}\left(C_{n}(A)\right) \subseteq C_{n}(B)$, and $\dot{f}_{\sharp}: C_{n}(X, A) \rightarrow C_{n}(Y, B)$ is well-defined.

Lemma 10.24. Let X, Y be topological spaces, $A \subseteq X, B \subseteq Y$, and $f:(X, A) \rightarrow(Y, B)$ a continuous function. The homomorphism $f_{\star}: H_{n}(X) \rightarrow H_{n}(Y)$ induces the homomorphism on relative homology groups

$$
\dot{f}_{\star}: H_{n}(X, A) \rightarrow H_{n}(Y, B), \quad \sigma+B_{n}(X, A) \mapsto f_{\sharp}(\sigma)+B_{n}(Y, B) .
$$

Proof. We have:

- If $\sigma+C_{n}(A) \in Z_{n}(X, A)$, then

$$
\partial\left(f_{\sharp}\left(\sigma+C_{n}(A)\right)\right)=\partial\left(f_{\sharp}(\sigma)+C_{n}(B)\right)=\partial\left(f_{\sharp}(\sigma)\right)+\partial\left(C_{n}(B)\right)=f_{\sharp}(\partial(\sigma))+\partial\left(C_{n}(B)\right) .
$$

Since $\partial(\sigma) \in C_{n-1}(A)$, then $f_{\sharp}(\partial(\sigma))+\partial\left(C_{n}(B)\right) \subseteq C_{n-1}(B)$, so $f_{\sharp}\left(Z_{n}(X, A)\right) \subseteq Z_{n}(Y, B)$.

- If $\sigma+C_{n+1}(A) \in C_{n+1}(X, A)$, then

$$
f_{\sharp}\left(\partial\left(\sigma+C_{n+1}(A)\right)\right)=\partial\left(f_{\sharp}\left(\sigma+C_{n+1}(A)\right)\right)=\partial\left(f_{\sharp}(\sigma)+C_{n+1}(B)\right),
$$

hence $f_{\sharp}\left(B_{n}(X, A)\right) \subseteq B_{n}(Y, B)$.
Like in Proposition 10.12, we deduce that f_{\sharp} induces a homomorphism $f_{\star}: H_{n}(X, A) \rightarrow H_{n}(Y, B)$.
Proposition 10.25. Let X, Y be topological spaces, $A \subseteq X, B \subseteq Y$, and $f:(X, A) \rightarrow(Y, B), g$: $(X, A) \rightarrow(Y, B)$ continuous functions. Suppose that there exists a homotopy $F: X \times[0,1] \rightarrow Y$ between f and g such that

$$
\forall t \in[0,1], F(A, t) \subseteq B .
$$

Then $\dot{f}_{\star}: H_{n}(X, A) \rightarrow H_{n}(Y, B)=\dot{g}_{\star}: H_{n}(X, A) \rightarrow H_{n}(Y, B)$.
Proof. If $\sigma \in C_{n}(X)$ such that $\sigma\left(\Delta^{n}\right) \subseteq A$, we get the composition $F \circ(\sigma \times i d): \Delta^{n} \times[0,1] \rightarrow A \times$ $[0,1] \rightarrow B$. The prism operator P of F then takes $C_{n}(A)$ to $C_{n+1}(B)$. Hence, it induces a relative prism operator

$$
\dot{P}: C_{n}(X, A) \rightarrow C_{n+1}(Y, B), \quad \sigma+C_{n}(A) \mapsto P(\sigma)+C_{n+1}(B) .
$$

Besides, for every $\sigma+C_{n}(A) \in C_{n}(X, A), \dot{\partial} \circ \dot{P}\left(\sigma+C_{n}(A)\right)=\dot{\partial}\left(P(\sigma)+C_{n+1}(B)\right)=\partial \circ P(\sigma)+C_{n}(B)$ and $\dot{P} \circ \dot{\partial}\left(\sigma+C_{n}(A)\right)=\dot{P}\left(\partial(\sigma)+C_{n-1}(A)\right)=P \circ \partial(\sigma)+C_{n}(B)$. So, by Proposition 10.17,

$$
\begin{aligned}
\dot{\partial} \circ \dot{P}\left(\sigma+C_{n}(A)\right)+\dot{P} \circ \dot{\partial}\left(\sigma+C_{n}(A)\right) & =\partial \circ P(\sigma)+P \circ \partial(\sigma)+C_{n}(B) \\
& =g_{\sharp}(\sigma)-f_{\sharp}(\sigma)+C_{n}(B) \\
& =\dot{g}_{\sharp}\left(\sigma+C_{n}(A)\right)-\dot{f}_{\sharp}\left(\sigma+C_{n}(A)\right) .
\end{aligned}
$$

If $\sigma+C_{n}(A) \in Z_{n}(X, A)$, since $\dot{\partial}\left(\sigma+C_{n}(A)\right)=C_{n-1}(A)$, then

$$
\dot{g}_{\sharp}\left(\sigma+C_{n}(A)\right)-\dot{f}_{\sharp}\left(\sigma+C_{n}(A)\right)=\dot{\partial} \circ \dot{P}\left(\sigma+C_{n}(A)\right) .
$$

Thus $\dot{g}_{\sharp}\left(\sigma+C_{n}(A)\right)-\dot{f}_{\sharp}\left(\sigma+C_{n}(A)\right) \in B_{n}(Y, B)$, meaning that $g_{\sharp}(\sigma)+B_{n}(Y, B)=f_{\sharp}(\sigma)+B_{n}(Y, B)$. So, for all $\sigma+B_{n}(X, A) \in H_{n}(X, A)$,

$$
\dot{g}_{\star}\left(\sigma+B_{n}(X, A)\right)=g_{\sharp}(\sigma)+B_{n}(Y, B)=f_{\sharp}(\sigma)+B_{n}(Y, B)=\dot{f}_{\star}\left(\sigma+B_{n}(X, A)\right) .
$$

Bibliography

[1] J. Dixmier, General Topology, Undergrad. Texts Math., 1984.
[2] A. Hatcher, Algebraic Topology, Cambridge University Press, 2001.
[3] M. Manetti, Topology, Unitext 91, 2015.
[4] J. Munkres, Topology, Prentice Hall, 2000.
[5] H. Queffélec, Topologie, Dunod, 2012.
[6] T. Tom Dieck, Algebraic Topology, EMS Textbk. Math., 2008.
[7] J. Vick, Homology Theory, Grad. Texts in Math. 145, 1994.

Index

Adherence
Value, 8
Adherent, 6
Basepoint, 31
Basis, 4
Boundary, 5

Chain
Singular, 44
Closed, 3, 23
Closure, 6
Compact, 15
Locally, 18
Component
Connected, 21
Path, 22
Connected, 19
Locally, 21
Path, 22
Path, 20
Simply, 31
Subset, 19
Continuous, 9
Covered
Evenly, 33
Covering, 15
Map, 33
Space, 33
Deformation
Retract, 40
Retraction, 40
Dense, 6
Diameter, 24
Distance, 24

Extremity, 20
Filter, 7

Filter Base, 7

Group
Fundamental, 31
Homeomorphism, 10
Homomorphism
Induced, 32
Homotopic, 40
Path, 29
Homotopy, 40
Equivalent, 41
Inverse, 41
Path, 29
Interior, 5
Lifting, 34
Correspondence, 37
Limit, 7
Loop, 31
Metric, 23
Neighborhood, 4
Fundamental System, 5
Nulhomotopic, 40
Open, 3,23
Ball, 23
Operator
Boundary, 44
Face, 44
Origin, 20
Path, 20
Retract, 40
Retraction, 40
Section, 33
Separated, 6

Sequence

Cauchy,26
Simplex, 43
Singular, 44
Standard, 44
Slice, 33
Space
Metric, 23
Complete, 26
Topological, 3
Subpace
Metric, 23
Subspace
Topological, 11
Topological
Space
Product, 13
Quotient, 14
Topology, 3
Discrete, 3
Finite Complement, 3
Generated, 4
Induced, 11
Product, 13
Quotient, 14
Trivial, 3
Vertex, 43

